![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnvres | Structured version Visualization version GIF version |
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
Ref | Expression |
---|---|
cnvcnvres | ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5426 | . . 3 ⊢ Rel (𝐴 ↾ 𝐵) | |
2 | dfrel2 5583 | . . 3 ⊢ (Rel (𝐴 ↾ 𝐵) ↔ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | mpbi 220 | . 2 ⊢ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
4 | rescnvcnv 5597 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
5 | 3, 4 | eqtr4i 2647 | 1 ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ◡ccnv 5113 ↾ cres 5116 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-res 5126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |