![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > compel | Structured version Visualization version GIF version |
Description: Equivalence between two ways of saying "is a member of the complement of 𝐴." (Contributed by Andrew Salmon, 15-Jul-2011.) |
Ref | Expression |
---|---|
compel | ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . 2 ⊢ 𝑥 ∈ V | |
2 | eldif 3584 | . 2 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 953 | 1 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 |
This theorem is referenced by: compeq 38642 compab 38645 conss34OLD 38646 |
Copyright terms: Public domain | W3C validator |