Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compel Structured version   Visualization version   GIF version

Theorem compel 38641
Description: Equivalence between two ways of saying "is a member of the complement of 𝐴." (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
compel (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)

Proof of Theorem compel
StepHypRef Expression
1 vex 3203 . 2 𝑥 ∈ V
2 eldif 3584 . 2 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 953 1 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wcel 1990  Vcvv 3200  cdif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577
This theorem is referenced by:  compeq  38642  compab  38645  conss34OLD  38646
  Copyright terms: Public domain W3C validator