Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compab Structured version   Visualization version   GIF version

Theorem compab 38645
Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
compab (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}

Proof of Theorem compab
StepHypRef Expression
1 nfcv 2764 . . . 4 𝑧V
2 nfab1 2766 . . . 4 𝑧{𝑧𝜑}
31, 2nfdif 3731 . . 3 𝑧(V ∖ {𝑧𝜑})
4 nfab1 2766 . . 3 𝑧{𝑧 ∣ ¬ 𝜑}
53, 4cleqf 2790 . 2 ((V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑} ↔ ∀𝑧(𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑}))
6 abid 2610 . . . 4 (𝑧 ∈ {𝑧𝜑} ↔ 𝜑)
76notbii 310 . . 3 𝑧 ∈ {𝑧𝜑} ↔ ¬ 𝜑)
8 compel 38641 . . 3 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ ¬ 𝑧 ∈ {𝑧𝜑})
9 abid 2610 . . 3 (𝑧 ∈ {𝑧 ∣ ¬ 𝜑} ↔ ¬ 𝜑)
107, 8, 93bitr4i 292 . 2 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑})
115, 10mpgbir 1726 1 (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  cdif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator