![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 148 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 160 ax13b 1964 mo2icl 3385 sbcrextOLD 3512 otsndisj 4979 snnen2o 8149 uzwo 11751 ssnn0fi 12784 s3sndisj 13706 hmeofval 21561 alexsubALTlem4 21854 nbuhgr 26239 nbgrnself2 26259 nb3grprlem2 26283 vtxdginducedm1lem4 26438 cvnbtwn 29145 not12an2impnot1 38784 |
Copyright terms: Public domain | W3C validator |