HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn Structured version   Visualization version   GIF version

Theorem cvnbtwn 29145
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))

Proof of Theorem cvnbtwn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 29141 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 psseq2 3695 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
3 psseq1 3694 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
42, 3anbi12d 747 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐶𝐶𝐵)))
54rspcev 3309 . . . . . . 7 ((𝐶C ∧ (𝐴𝐶𝐶𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
65ex 450 . . . . . 6 (𝐶C → ((𝐴𝐶𝐶𝐵) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
76con3rr3 151 . . . . 5 (¬ ∃𝑥C (𝐴𝑥𝑥𝐵) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
87adantl 482 . . . 4 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
91, 8syl6bi 243 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵 → (𝐶C → ¬ (𝐴𝐶𝐶𝐵))))
109com23 86 . 2 ((𝐴C𝐵C ) → (𝐶C → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵))))
11103impia 1261 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wpss 3575   class class class wbr 4653   C cch 27786   ccv 27821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cv 29138
This theorem is referenced by:  cvnbtwn2  29146  cvnbtwn3  29147  cvnbtwn4  29148  cvntr  29151
  Copyright terms: Public domain W3C validator