MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 8149
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2𝑜

Proof of Theorem snnen2o
StepHypRef Expression
1 1onn 7719 . . . 4 1𝑜 ∈ ω
2 php5 8148 . . . 4 (1𝑜 ∈ ω → ¬ 1𝑜 ≈ suc 1𝑜)
31, 2ax-mp 5 . . 3 ¬ 1𝑜 ≈ suc 1𝑜
4 ensn1g 8021 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1𝑜)
5 df-2o 7561 . . . . . 6 2𝑜 = suc 1𝑜
65eqcomi 2631 . . . . 5 suc 1𝑜 = 2𝑜
76breq2i 4661 . . . 4 (1𝑜 ≈ suc 1𝑜 ↔ 1𝑜 ≈ 2𝑜)
8 ensymb 8004 . . . . . 6 ({𝐴} ≈ 1𝑜 ↔ 1𝑜 ≈ {𝐴})
9 entr 8008 . . . . . . 7 ((1𝑜 ≈ {𝐴} ∧ {𝐴} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
109ex 450 . . . . . 6 (1𝑜 ≈ {𝐴} → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
118, 10sylbi 207 . . . . 5 ({𝐴} ≈ 1𝑜 → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
1211con3rr3 151 . . . 4 (¬ 1𝑜 ≈ 2𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜))
137, 12sylnbi 320 . . 3 (¬ 1𝑜 ≈ suc 1𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜))
143, 4, 13mpsyl 68 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜)
15 2on0 7569 . . . 4 2𝑜 ≠ ∅
16 ensymb 8004 . . . . 5 (∅ ≈ 2𝑜 ↔ 2𝑜 ≈ ∅)
17 en0 8019 . . . . 5 (2𝑜 ≈ ∅ ↔ 2𝑜 = ∅)
1816, 17bitri 264 . . . 4 (∅ ≈ 2𝑜 ↔ 2𝑜 = ∅)
1915, 18nemtbir 2889 . . 3 ¬ ∅ ≈ 2𝑜
20 snprc 4253 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 206 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 4663 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2𝑜 ↔ ∅ ≈ 2𝑜))
2319, 22mtbiri 317 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜)
2414, 23pm2.61i 176 1 ¬ {𝐴} ≈ 2𝑜
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177   class class class wbr 4653  suc csuc 5725  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  pmtrsn  17939
  Copyright terms: Public domain W3C validator