MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbmpt12 Structured version   Visualization version   GIF version

Theorem csbmpt12 5010
Description: Move substitution into a maps-to notation. (Contributed by AV, 26-Sep-2019.)
Assertion
Ref Expression
csbmpt12 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem csbmpt12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbopab 5008 . . 3 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍)}
2 sbcan 3478 . . . . 5 ([𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍) ↔ ([𝐴 / 𝑥]𝑦𝑌[𝐴 / 𝑥]𝑧 = 𝑍))
3 sbcel12 3983 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑌𝐴 / 𝑥𝑦𝐴 / 𝑥𝑌)
4 csbconstg 3546 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
54eleq1d 2686 . . . . . . 7 (𝐴𝑉 → (𝐴 / 𝑥𝑦𝐴 / 𝑥𝑌𝑦𝐴 / 𝑥𝑌))
63, 5syl5bb 272 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑌𝑦𝐴 / 𝑥𝑌))
7 sbceq2g 3990 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 = 𝑍𝑧 = 𝐴 / 𝑥𝑍))
86, 7anbi12d 747 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝑦𝑌[𝐴 / 𝑥]𝑧 = 𝑍) ↔ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)))
92, 8syl5bb 272 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍) ↔ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)))
109opabbidv 4716 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)})
111, 10syl5eq 2668 . 2 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)})
12 df-mpt 4730 . . 3 (𝑦𝑌𝑍) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)}
1312csbeq2i 3993 . 2 𝐴 / 𝑥(𝑦𝑌𝑍) = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)}
14 df-mpt 4730 . 2 (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)}
1511, 13, 143eqtr4g 2681 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  [wsbc 3435  csb 3533  {copab 4712  cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  csbmpt2  5011  esum2dlem  30154
  Copyright terms: Public domain W3C validator