Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigOLD Structured version   Visualization version   GIF version

Theorem csbunigOLD 39051
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 22-Aug-2018. Use csbuni 4466 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbunigOLD (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Proof of Theorem csbunigOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabgOLD 39050 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)})
2 sbcexgOLD 38753 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵)))
3 sbcangOLD 38739 . . . . . . 7 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
4 sbcg 3503 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
5 sbcel2gOLD 38755 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
64, 5anbi12d 747 . . . . . . 7 (𝐴𝑉 → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
73, 6bitrd 268 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
87exbidv 1850 . . . . 5 (𝐴𝑉 → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
92, 8bitrd 268 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
109abbidv 2741 . . 3 (𝐴𝑉 → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
111, 10eqtrd 2656 . 2 (𝐴𝑉𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
12 df-uni 4437 . . 3 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
1312csbeq2i 3993 . 2 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
14 df-uni 4437 . 2 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
1511, 13, 143eqtr4g 2681 1 (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  [wsbc 3435  csb 3533   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator