![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
abbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbidv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | abbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | abbid 2740 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 {cab 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: rabbidva2 3186 cdeqab 3425 sbceqbid 3442 csbeq1 3536 csbeq2 3537 csbprc 3980 csbprcOLD 3981 sbcel12 3983 sbceqg 3984 csbeq2d 3991 csbnestgf 3996 pweq 4161 sneq 4187 csbsng 4243 rabsn 4256 unieq 4444 csbuni 4466 inteq 4478 iineq1 4535 iineq2 4538 dfiin2g 4553 iinrab 4582 iinxprg 4601 opabbid 4715 imasng 5487 iotaeq 5859 iotabi 5860 dfimafn 6245 fnsnfv 6258 fliftf 6565 oprabbid 6708 wrecseq123 7408 rdglim2 7528 qseq1 7796 qseq2 7797 qsinxp 7823 mapvalg 7867 ixpsnval 7911 ixpeq1 7919 fival 8318 tcvalg 8614 karden 8758 acneq 8866 infmap2 9040 cfval 9069 cflim3 9084 axdclem 9341 axdc 9343 rankcf 9599 genpv 9821 negfi 10971 supadd 10991 hashf1lem2 13240 hashf1 13241 hashfac 13242 csbwrdg 13334 cshimadifsn 13575 cshimadifsn0 13576 cleq1 13722 dfrtrcl2 13802 shftlem 13808 shftfib 13812 vdwlem6 15690 cshwsiun 15806 lubfval 16978 glbfval 16991 eqglact 17645 isghm 17660 symgval 17799 sylow1lem2 18014 sylow3lem1 18042 efgval 18130 dmdprd 18397 ixpsnbasval 19209 aspval2 19347 ressmplbas2 19455 cssval 20026 tgval 20759 clsval2 20854 lpfval 20942 lpval 20943 islocfin 21320 ptval 21373 hauspwpwf1 21791 ptcmplem2 21857 snclseqg 21919 ustval 22006 itg2val 23495 limcfval 23636 plyval 23949 isismt 25429 nb3grprlem1 26282 vtxdun 26377 rgrx0ndm 26489 ewlksfval 26497 wwlksnfi 26801 rusgrnumwwlkb0 26866 eclclwwlksn1 26952 avril1 27319 nmoofval 27617 nmooval 27618 nmoo0 27646 nmopval 28715 nmfnval 28735 iunrdx 29382 disjabrex 29395 disjabrexf 29396 dfimafnf 29436 curry2ima 29486 pstmval 29938 pstmfval 29939 sigaval 30173 measval 30261 orvcval 30519 bnj956 30847 bnj18eq1 30997 bnj1318 31093 derangval 31149 mclsval 31460 dfrdg2 31701 dfrdg3 31702 altxpeq1 32080 altxpeq2 32081 bj-snsetex 32951 bj-sngleq 32955 bj-projeq 32980 bj-projval 32984 csbwrecsg 33173 csboprabg 33176 finxpeq1 33223 finxpeq2 33224 csbfinxpg 33225 finxpreclem6 33233 ptrest 33408 poimirlem26 33435 poimirlem27 33436 poimirlem28 33437 mblfinlem3 33448 cnambfre 33458 itg2addnc 33464 areacirclem5 33504 sdclem2 33538 sdc 33540 ismtyval 33599 elghomlem1OLD 33684 iineq12f 33973 eccnvepres 34045 lfl1dim 34408 ldual1dim 34453 glbconxN 34664 lineset 35024 pointsetN 35027 psubspset 35030 pmapglb2xN 35058 polval2N 35192 psubclsetN 35222 lautset 35368 pautsetN 35384 tendofset 36046 tendoset 36047 dva1dim 36273 dia1dim2 36351 dib1dim2 36457 diclspsn 36483 dih1dimatlem 36618 dihglb2 36631 hdmap1ffval 37085 hdmapffval 37118 hgmapffval 37177 eldiophb 37320 eldioph 37321 diophrw 37322 eldioph2 37325 eldioph2b 37326 eldioph3 37329 diophin 37336 diophun 37337 diophrex 37339 rexrabdioph 37358 rmxypairf1o 37476 hbtlem1 37693 hbtlem7 37695 nzss 38516 dropab1 38651 dropab2 38652 sbcel12gOLD 38754 csbunigOLD 39051 csbfv12gALTOLD 39052 csbxpgOLD 39053 csbrngOLD 39056 supsubc 39569 dfaimafn 41245 rnfdmpr 41300 fargshiftfo 41378 sprval 41729 sprvalpw 41730 setrecseq 42432 |
Copyright terms: Public domain | W3C validator |