Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cureq Structured version   Visualization version   GIF version

Theorem cureq 33385
Description: Equality theorem for currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
cureq (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)

Proof of Theorem cureq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5324 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
21dmeqd 5326 . . 3 (𝐴 = 𝐵 → dom dom 𝐴 = dom dom 𝐵)
3 breq 4655 . . . 4 (𝐴 = 𝐵 → (⟨𝑥, 𝑦𝐴𝑧 ↔ ⟨𝑥, 𝑦𝐵𝑧))
43opabbidv 4716 . . 3 (𝐴 = 𝐵 → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧} = {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
52, 4mpteq12dv 4733 . 2 (𝐴 = 𝐵 → (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧}) = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧}))
6 df-cur 7393 . 2 curry 𝐴 = (𝑥 ∈ dom dom 𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐴𝑧})
7 df-cur 7393 . 2 curry 𝐵 = (𝑥 ∈ dom dom 𝐵 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐵𝑧})
85, 6, 73eqtr4g 2681 1 (𝐴 = 𝐵 → curry 𝐴 = curry 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729  dom cdm 5114  curry ccur 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-dm 5124  df-cur 7393
This theorem is referenced by:  curfv  33389  matunitlindf  33407
  Copyright terms: Public domain W3C validator