Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dedths2 Structured version   Visualization version   GIF version

Theorem dedths2 34251
Description: Generalization of dedths 34248 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
Hypothesis
Ref Expression
dedths2.1 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
Assertion
Ref Expression
dedths2 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem dedths2
StepHypRef Expression
1 dfsbcq 3437 . 2 (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜓[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓))
2 dedths2.1 . 2 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
31, 2dedth 4139 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsbc 3435  ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-sbc 3436  df-if 4087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator