| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.9alt | Structured version Visualization version GIF version | ||
| Description: Version of 19.9t 2071 for universal quantifier. (Contributed by NM, 9-Nov-2020.) |
| Ref | Expression |
|---|---|
| 19.9alt | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnt 1782 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 2 | 19.9t 2071 | . . . 4 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑)) |
| 4 | 3 | con2bid 344 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)) |
| 5 | alex 1753 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 6 | 4, 5 | syl6rbbr 279 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |