Detailed syntax breakdown of Definition df-acn
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | 1 | wacn 8764 |
. 2
class AC
𝐴 |
| 3 | | cvv 3200 |
. . . . 5
class
V |
| 4 | 1, 3 | wcel 1990 |
. . . 4
wff 𝐴 ∈ V |
| 5 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 6 | 5 | cv 1482 |
. . . . . . . . 9
class 𝑦 |
| 7 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
| 8 | 7 | cv 1482 |
. . . . . . . . 9
class 𝑔 |
| 9 | 6, 8 | cfv 5888 |
. . . . . . . 8
class (𝑔‘𝑦) |
| 10 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 11 | 10 | cv 1482 |
. . . . . . . . 9
class 𝑓 |
| 12 | 6, 11 | cfv 5888 |
. . . . . . . 8
class (𝑓‘𝑦) |
| 13 | 9, 12 | wcel 1990 |
. . . . . . 7
wff (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 14 | 13, 5, 1 | wral 2912 |
. . . . . 6
wff
∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 15 | 14, 7 | wex 1704 |
. . . . 5
wff
∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 16 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 17 | 16 | cv 1482 |
. . . . . . . 8
class 𝑥 |
| 18 | 17 | cpw 4158 |
. . . . . . 7
class 𝒫
𝑥 |
| 19 | | c0 3915 |
. . . . . . . 8
class
∅ |
| 20 | 19 | csn 4177 |
. . . . . . 7
class
{∅} |
| 21 | 18, 20 | cdif 3571 |
. . . . . 6
class
(𝒫 𝑥 ∖
{∅}) |
| 22 | | cmap 7857 |
. . . . . 6
class
↑𝑚 |
| 23 | 21, 1, 22 | co 6650 |
. . . . 5
class
((𝒫 𝑥
∖ {∅}) ↑𝑚 𝐴) |
| 24 | 15, 10, 23 | wral 2912 |
. . . 4
wff
∀𝑓 ∈
((𝒫 𝑥 ∖
{∅}) ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 25 | 4, 24 | wa 384 |
. . 3
wff (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅})
↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 26 | 25, 16 | cab 2608 |
. 2
class {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅})
↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
| 27 | 2, 26 | wceq 1483 |
1
wff AC
𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅})
↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |