MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Structured version   Visualization version   GIF version

Theorem acneq 8866
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq (𝐴 = 𝐶AC 𝐴 = AC 𝐶)

Proof of Theorem acneq
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
2 oveq2 6658 . . . . 5 (𝐴 = 𝐶 → ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴) = ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐶))
3 raleq 3138 . . . . . 6 (𝐴 = 𝐶 → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
43exbidv 1850 . . . . 5 (𝐴 = 𝐶 → (∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
52, 4raleqbidv 3152 . . . 4 (𝐴 = 𝐶 → (∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦) ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦)))
61, 5anbi12d 747 . . 3 (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))))
76abbidv 2741 . 2 (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))})
8 df-acn 8768 . 2 AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
9 df-acn 8768 . 2 AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐶)∃𝑔𝑦𝐶 (𝑔𝑦) ∈ (𝑓𝑦))}
107, 8, 93eqtr4g 2681 1 (𝐴 = 𝐶AC 𝐴 = AC 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-acn 8768
This theorem is referenced by:  acndom  8874  dfacacn  8963  dfac13  8964
  Copyright terms: Public domain W3C validator