![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isacn | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
isacn | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4161 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋) | |
2 | 1 | difeq1d 3727 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝒫 𝑦 ∖ {∅}) = (𝒫 𝑋 ∖ {∅})) |
3 | 2 | oveq1d 6665 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝒫 𝑦 ∖ {∅}) ↑𝑚 𝐴) = ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) |
4 | 3 | raleqdv 3144 | . . . 4 ⊢ (𝑦 = 𝑋 → (∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
5 | 4 | anbi2d 740 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)))) |
6 | df-acn 8768 | . . 3 ⊢ AC 𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑦 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))} | |
7 | 5, 6 | elab2g 3353 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)))) |
8 | elex 3212 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
9 | biid 251 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | |
10 | 9 | baib 944 | . . 3 ⊢ (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
12 | 7, 11 | sylan9bb 736 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 𝒫 cpw 4158 {csn 4177 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 AC wacn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-acn 8768 |
This theorem is referenced by: acni 8868 numacn 8872 finacn 8873 acndom 8874 acndom2 8877 acncc 9262 |
Copyright terms: Public domain | W3C validator |