Detailed syntax breakdown of Definition df-cnfld
| Step | Hyp | Ref
| Expression |
| 1 | | ccnfld 19746 |
. 2
class
ℂfld |
| 2 | | cnx 15854 |
. . . . . . 7
class
ndx |
| 3 | | cbs 15857 |
. . . . . . 7
class
Base |
| 4 | 2, 3 | cfv 5888 |
. . . . . 6
class
(Base‘ndx) |
| 5 | | cc 9934 |
. . . . . 6
class
ℂ |
| 6 | 4, 5 | cop 4183 |
. . . . 5
class
〈(Base‘ndx), ℂ〉 |
| 7 | | cplusg 15941 |
. . . . . . 7
class
+g |
| 8 | 2, 7 | cfv 5888 |
. . . . . 6
class
(+g‘ndx) |
| 9 | | caddc 9939 |
. . . . . 6
class
+ |
| 10 | 8, 9 | cop 4183 |
. . . . 5
class
〈(+g‘ndx), + 〉 |
| 11 | | cmulr 15942 |
. . . . . . 7
class
.r |
| 12 | 2, 11 | cfv 5888 |
. . . . . 6
class
(.r‘ndx) |
| 13 | | cmul 9941 |
. . . . . 6
class
· |
| 14 | 12, 13 | cop 4183 |
. . . . 5
class
〈(.r‘ndx), · 〉 |
| 15 | 6, 10, 14 | ctp 4181 |
. . . 4
class
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
+ 〉, 〈(.r‘ndx), · 〉} |
| 16 | | cstv 15943 |
. . . . . . 7
class
*𝑟 |
| 17 | 2, 16 | cfv 5888 |
. . . . . 6
class
(*𝑟‘ndx) |
| 18 | | ccj 13836 |
. . . . . 6
class
∗ |
| 19 | 17, 18 | cop 4183 |
. . . . 5
class
〈(*𝑟‘ndx), ∗〉 |
| 20 | 19 | csn 4177 |
. . . 4
class
{〈(*𝑟‘ndx),
∗〉} |
| 21 | 15, 20 | cun 3572 |
. . 3
class
({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) |
| 22 | | cts 15947 |
. . . . . . 7
class
TopSet |
| 23 | 2, 22 | cfv 5888 |
. . . . . 6
class
(TopSet‘ndx) |
| 24 | | cabs 13974 |
. . . . . . . 8
class
abs |
| 25 | | cmin 10266 |
. . . . . . . 8
class
− |
| 26 | 24, 25 | ccom 5118 |
. . . . . . 7
class (abs
∘ − ) |
| 27 | | cmopn 19736 |
. . . . . . 7
class
MetOpen |
| 28 | 26, 27 | cfv 5888 |
. . . . . 6
class
(MetOpen‘(abs ∘ − )) |
| 29 | 23, 28 | cop 4183 |
. . . . 5
class
〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉 |
| 30 | | cple 15948 |
. . . . . . 7
class
le |
| 31 | 2, 30 | cfv 5888 |
. . . . . 6
class
(le‘ndx) |
| 32 | | cle 10075 |
. . . . . 6
class
≤ |
| 33 | 31, 32 | cop 4183 |
. . . . 5
class
〈(le‘ndx), ≤ 〉 |
| 34 | | cds 15950 |
. . . . . . 7
class
dist |
| 35 | 2, 34 | cfv 5888 |
. . . . . 6
class
(dist‘ndx) |
| 36 | 35, 26 | cop 4183 |
. . . . 5
class
〈(dist‘ndx), (abs ∘ − )〉 |
| 37 | 29, 33, 36 | ctp 4181 |
. . . 4
class
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} |
| 38 | | cunif 15951 |
. . . . . . 7
class
UnifSet |
| 39 | 2, 38 | cfv 5888 |
. . . . . 6
class
(UnifSet‘ndx) |
| 40 | | cmetu 19737 |
. . . . . . 7
class
metUnif |
| 41 | 26, 40 | cfv 5888 |
. . . . . 6
class
(metUnif‘(abs ∘ − )) |
| 42 | 39, 41 | cop 4183 |
. . . . 5
class
〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉 |
| 43 | 42 | csn 4177 |
. . . 4
class
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉} |
| 44 | 37, 43 | cun 3572 |
. . 3
class
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) |
| 45 | 21, 44 | cun 3572 |
. 2
class
(({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
| 46 | 1, 45 | wceq 1483 |
1
wff
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |