| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscplgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| iscplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| iscplgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
| 2 | iscplgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 1, 2 | syl6eqr 2674 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 4 | fveq2 6191 | . . . 4 ⊢ (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺)) | |
| 5 | 4 | eleq2d 2687 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑣 ∈ (UnivVtx‘𝑔) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) |
| 6 | 3, 5 | raleqbidv 3152 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 7 | df-cplgr 26231 | . 2 ⊢ ComplGraph = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔)} | |
| 8 | 6, 7 | elab2g 3353 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ‘cfv 5888 Vtxcvtx 25874 UnivVtxcuvtxa 26225 ComplGraphccplgr 26226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-cplgr 26231 |
| This theorem is referenced by: cplgruvtxb 26311 iscplgrnb 26312 iscusgrvtx 26317 cplgr0 26321 cplgr0v 26323 cplgr1v 26326 cplgr2v 26328 cusgrexi 26339 structtocusgr 26342 cusgrres 26344 |
| Copyright terms: Public domain | W3C validator |