| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cvs | Structured version Visualization version GIF version | ||
| Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| df-cvs | ⊢ ℂVec = (ℂMod ∩ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccvs 22923 | . 2 class ℂVec | |
| 2 | cclm 22862 | . . 3 class ℂMod | |
| 3 | clvec 19102 | . . 3 class LVec | |
| 4 | 2, 3 | cin 3573 | . 2 class (ℂMod ∩ LVec) |
| 5 | 1, 4 | wceq 1483 | 1 wff ℂVec = (ℂMod ∩ LVec) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cvslvec 22925 cvsclm 22926 iscvs 22927 cvsi 22930 cnstrcvs 22941 cncvs 22945 recvs 22946 qcvs 22947 zclmncvs 22948 |
| Copyright terms: Public domain | W3C validator |