![]() |
Metamath
Proof Explorer Theorem List (p. 230 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | clmmulg 22901 | The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ∙ = (.g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵)) | ||
Theorem | clmsubdir 22902 | Scalar multiplication distributive law for subtraction. (lmodsubdir 18921 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) | ||
Theorem | clmpm1dir 22903 | Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) | ||
Theorem | clmnegneg 22904 | Double negative of a vector. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (-1 · (-1 · 𝐴)) = 𝐴) | ||
Theorem | clmnegsubdi2 22905 | Distribution of negative over vector subtraction. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (-1 · (𝐴 + (-1 · 𝐵))) = (𝐵 + (-1 · 𝐴))) | ||
Theorem | clmsub4 22906 | Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) | ||
Theorem | clmvsrinv 22907 | A vector minus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = 0 ) | ||
Theorem | clmvslinv 22908 | Minus a vector plus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ((-1 · 𝐴) + 𝐴) = 0 ) | ||
Theorem | clmvsubval 22909 | Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 18918. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) | ||
Theorem | clmvsubval2 22910 | Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = ((-1 · 𝐵) + 𝐴)) | ||
Theorem | clmvz 22911 | Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ( 0 − 𝐴) = (-1 · 𝐴)) | ||
Theorem | zlmclm 22912 | The ℤ-module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod) | ||
Theorem | clmzlmvsca 22913 | The scalar product of a subcomplex module matches the scalar product of the derived ℤ-module, which implies, together with zlmbas 19866 and zlmplusg 19867, that any module over ℤ is structure-equivalent to the canonical ℤ-module ℤMod‘𝐺. (Contributed by Mario Carneiro, 30-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ ℂMod ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋)) → (𝐴( ·𝑠 ‘𝐺)𝐵) = (𝐴( ·𝑠 ‘𝑊)𝐵)) | ||
Theorem | nmoleub2lem 22914* | Lemma for nmoleub2a 22917 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) & ⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝜓 → (𝐿‘𝑥) ≤ 𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2lem3 22915* | Lemma for nmoleub2a 22917 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑆)) & ⊢ (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴))) & ⊢ (𝜑 → ¬ (𝑀‘(𝐹‘𝐵)) ≤ (𝐴 · (𝐿‘𝐵))) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | nmoleub2lem2 22916* | Lemma for nmoleub2a 22917 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥)𝑂𝑅 → (𝐿‘𝑥) ≤ 𝑅)) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥) < 𝑅 → (𝐿‘𝑥)𝑂𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2a 22917* | The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) ≤ 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub2b 22918* | The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmoleub3 22919* | The operator norm is the supremum of the value of a linear operator on the closed unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → ℝ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
Theorem | nmhmcn 22920 | A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
Theorem | cmodscexp 22921 | The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) | ||
Theorem | cmodscmulexp 22922 | The scalar product of a vector with powers of i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains i. (Contributed by AV, 18-Oct-2021.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋) | ||
Usually, "complex vector spaces" are vector spaces over the field of the complex numbers, see for example the definition in [Roman] p. 36. In the setting of set.mm, it is convenient to consider collectively vector spaces on subfields of the field of complex numbers. We call these, "subcomplex vector spaces" and collect them in the class ℂVec defined in df-cvs 22924 and characterized in iscvs 22927. These include rational vector spaces (qcvs 22947), real vector spaces (recvs 22946) and complex vector spaces (cncvs 22945). This definition is analogous to the definition of subcomplex modules (and their class ℂMod), which are modules over subrings of the field of complex numbers. Note that ZZ-modules (that are roughly the same thing as Abelian groups, see zlmclm 22912) are subcomplex modules but are not subcomplex vector spaces (see zclmncvs 22948), because the ring ZZ is not a division ring (see zringndrg 19838). Since the field of complex numbers is commutative, so are its subrings, so there is no need to explicitly state "left module" or "left vector space" for subcomplex modules or vector spaces. | ||
Syntax | ccvs 22923 | Syntax for the class of subcomplex vector spaces. |
class ℂVec | ||
Definition | df-cvs 22924 | Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ ℂVec = (ℂMod ∩ LVec) | ||
Theorem | cvslvec 22925 | A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LVec) | ||
Theorem | cvsclm 22926 | A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
Theorem | iscvs 22927 | A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) | ||
Theorem | iscvsp 22928* | The predicate "is a subcomplex vector space." (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) | ||
Theorem | iscvsi 22929* | Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 ∈ Grp & ⊢ 𝑆 = (ℂfld ↾s 𝐾) & ⊢ 𝑆 ∈ DivRing & ⊢ 𝐾 ∈ (SubRing‘ℂfld) & ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
Theorem | cvsi 22930* | The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (Base‘(Scalar‘𝑊)) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ ∙ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥 ∈ 𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))) | ||
Theorem | cvsunit 22931 | Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) | ||
Theorem | cvsdiv 22932 | Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) | ||
Theorem | cvsdivcl 22933 | The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) | ||
Theorem | cvsmuleqdivd 22934 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) | ||
Theorem | cvsdiveqd 22935 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) | ||
Theorem | cnlmodlem1 22936 | Lemma 1 for cnlmod 22940. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Base‘𝑊) = ℂ | ||
Theorem | cnlmodlem2 22937 | Lemma 2 for cnlmod 22940. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (+g‘𝑊) = + | ||
Theorem | cnlmodlem3 22938 | Lemma 3 for cnlmod 22940. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Scalar‘𝑊) = ℂfld | ||
Theorem | cnlmod4 22939 | Lemma 4 for cnlmod 22940. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( ·𝑠 ‘𝑊) = · | ||
Theorem | cnlmod 22940 | The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ LMod | ||
Theorem | cnstrcvs 22941 | The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
Theorem | cnrbas 22942 | The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (Base‘𝐶) = ℂ | ||
Theorem | cnrlmod 22943 | The complex left module of complex numbers is a left module. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LMod | ||
Theorem | cnrlvec 22944 | The complex left module of complex numbers is a left vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LVec | ||
Theorem | cncvs 22945 | The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ ℂVec | ||
Theorem | recvs 22946 | The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
⊢ 𝑅 = (ringLMod‘ℝfld) ⇒ ⊢ 𝑅 ∈ ℂVec | ||
Theorem | qcvs 22947 | The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
⊢ 𝑄 = (ringLMod‘(ℂfld ↾s ℚ)) ⇒ ⊢ 𝑄 ∈ ℂVec | ||
Theorem | zclmncvs 22948 | The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
⊢ 𝑍 = (ringLMod‘ℤring) ⇒ ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) | ||
This section characterizes normed subcomplex vector spaces as subcomplex vector spaces which are also normed vector spaces (that is, normed groups with a positively homogeneous norm). For the moment, there is no need of a special token to represent their class, so we only use the characterization isncvsngp 22949. Most theorems for normed subcomplex vector spaces have a label containing "ncvs". The idiom 𝑊 ∈ (NrmVec ∩ ℂVec) is used in the following to say that 𝑊 is a normed subcomplex vector space, i.e. a subcomplex vector space which is also a normed vector space. | ||
Theorem | isncvsngp 22949* | A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) | ||
Theorem | isncvsngpd 22950* | Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝑊 ∈ NrmGrp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) ⇒ ⊢ (𝜑 → 𝑊 ∈ (NrmVec ∩ ℂVec)) | ||
Theorem | ncvsi 22951* | The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) | ||
Theorem | ncvsprp 22952 | Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | ncvsge0 22953 | The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (𝐴 · (𝑁‘𝐵))) | ||
Theorem | ncvsm1 22954 | The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁‘𝐴)) | ||
Theorem | ncvsdif 22955 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴)))) | ||
Theorem | ncvspi 22956 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴)))) | ||
Theorem | ncvs1 22957 | From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) & ⊢ 𝐹 = (Scalar‘𝐺) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 0 ) ∧ (1 / (𝑁‘𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁‘𝐴)) · 𝐴)) = 1) | ||
Theorem | cnrnvc 22958 | The set of complex numbers (as a subring of itself) is a normed vector space over itself. The vector operation is +, and the scalar product is ·, and the norm function is abs. (Contributed by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ NrmVec | ||
Theorem | cnncvs 22959 | The set of complex numbers (as a subring of itself) is a normed subcomplex vector space. The vector operation is +, and the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ (NrmVec ∩ ℂVec) | ||
Theorem | cnnm 22960 | The norm operation of the normed subcomplex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) |
⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (norm‘𝐶) = abs | ||
Theorem | ncvspds 22961 | Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) | ||
Theorem | cnindmet 22962 | The metric induced on the complex numbers. cnmet 22575 proves that it is a metric. The induced metric is identical with the original metric on the complex numbers, see cnfldds 19756 and also cnmet 22575. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by AV, 17-Oct-2021.) |
⊢ 𝑇 = (ℂfld toNrmGrp abs) ⇒ ⊢ (dist‘𝑇) = (abs ∘ − ) | ||
Theorem | cnncvsaddassdemo 22963 | Derive the associative law for complex number addition addass 10023 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | cnncvsmulassdemo 22964 | Derive the associative law for complex number multiplication mulass 10024 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | cnncvsabsnegdemo 22965 | Derive the absolute value of a negative complex number absneg 14017 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
Syntax | ccph 22966 | Extend class notation with a class of subcomplex pre-Hilbert spaces. |
class ℂPreHil | ||
Syntax | ctch 22967 | Function to put a norm on a Hilbert space. |
class toℂHil | ||
Definition | df-cph 22968* | Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a quadratically closed subfield of ℂfld, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} | ||
Definition | df-tch 22969* | Define a function to augment a (pre-)Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ toℂHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | ||
Theorem | iscph 22970* | A subcomplex pre-Hilbert space is a pre-Hilbert space over a quadratically closed subfield of the field of complex numbers, with a norm defined. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) | ||
Theorem | cphphl 22971 | A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | ||
Theorem | cphnlm 22972 | A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | ||
Theorem | cphngp 22973 | A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | ||
Theorem | cphlmod 22974 | A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) | ||
Theorem | cphlvec 22975 | A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | ||
Theorem | cphnvc 22976 | A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | ||
Theorem | cphsubrglem 22977 | Lemma for cphsubrg 22980. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
Theorem | cphreccllem 22978 | Lemma for cphreccl 22981. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) | ||
Theorem | cphsca 22979 | A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) | ||
Theorem | cphsubrg 22980 | The scalar field of a subcomplex pre-Hilbert space is a subring of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) | ||
Theorem | cphreccl 22981 | The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝐾) | ||
Theorem | cphdivcl 22982 | The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) | ||
Theorem | cphcjcl 22983 | The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl 22984 | The scalar field of a subcomplex pre-Hilbert space is closed under square roots of positive reals (i.e. it is quadratically closed relative to ℝ). (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphabscl 22985 | The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl2 22986 | The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphsqrtcl3 22987 | If the scalar field contains i, it is completely closed under square roots (i.e. it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾) → (√‘𝐴) ∈ 𝐾) | ||
Theorem | cphqss 22988 | The scalar field of a subcomplex pre-Hilbert space contains all rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾) | ||
Theorem | cphclm 22989 | A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | ||
Theorem | cphnmvs 22990 | Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((abs‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | cphipcl 22991 | An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ ℂ) | ||
Theorem | cphnmfval 22992* | The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | cphnm 22993 | The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) = (√‘(𝐴 , 𝐴))) | ||
Theorem | nmsq 22994 | The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) | ||
Theorem | cphnmf 22995 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁:𝑉⟶𝐾) | ||
Theorem | cphnmcl 22996 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ 𝐾) | ||
Theorem | reipcl 22997 | An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℝ) | ||
Theorem | ipge0 22998 | The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝐴 , 𝐴)) | ||
Theorem | cphipcj 22999 | Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj 19979. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∗‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
Theorem | cphipipcj 23000 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (Revised by AV, 19-Oct-2021.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) · (𝐵 , 𝐴)) = ((abs‘(𝐴 , 𝐵))↑2)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |