![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnstrcvs | Structured version Visualization version GIF version |
Description: The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.) |
Ref | Expression |
---|---|
cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
cnstrcvs | ⊢ 𝑊 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlmod.w | . . . . 5 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
2 | 1 | cnlmod 22940 | . . . 4 ⊢ 𝑊 ∈ LMod |
3 | cnfldex 19749 | . . . . . 6 ⊢ ℂfld ∈ V | |
4 | cnfldbas 19750 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
5 | 4 | ressid 15935 | . . . . . 6 ⊢ (ℂfld ∈ V → (ℂfld ↾s ℂ) = ℂfld) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ (ℂfld ↾s ℂ) = ℂfld |
7 | 6 | eqcomi 2631 | . . . 4 ⊢ ℂfld = (ℂfld ↾s ℂ) |
8 | id 22 | . . . . 5 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
9 | addcl 10018 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | negcl 10281 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
11 | ax-1cn 9994 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | mulcl 10020 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
13 | 8, 9, 10, 11, 12 | cnsubrglem 19796 | . . . 4 ⊢ ℂ ∈ (SubRing‘ℂfld) |
14 | qdass 4288 | . . . . . . . 8 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), ℂfld〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
15 | 1, 14 | eqtri 2644 | . . . . . . 7 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), ℂfld〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
16 | 15 | lmodsca 16020 | . . . . . 6 ⊢ (ℂfld ∈ V → ℂfld = (Scalar‘𝑊)) |
17 | 3, 16 | ax-mp 5 | . . . . 5 ⊢ ℂfld = (Scalar‘𝑊) |
18 | 17 | isclmi 22877 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ℂfld = (ℂfld ↾s ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
19 | 2, 7, 13, 18 | mp3an 1424 | . . 3 ⊢ 𝑊 ∈ ℂMod |
20 | cndrng 19775 | . . . 4 ⊢ ℂfld ∈ DivRing | |
21 | 17 | islvec 19104 | . . . 4 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ ℂfld ∈ DivRing)) |
22 | 2, 20, 21 | mpbir2an 955 | . . 3 ⊢ 𝑊 ∈ LVec |
23 | elin 3796 | . . 3 ⊢ (𝑊 ∈ (ℂMod ∩ LVec) ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) | |
24 | 19, 22, 23 | mpbir2an 955 | . 2 ⊢ 𝑊 ∈ (ℂMod ∩ LVec) |
25 | df-cvs 22924 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
26 | 24, 25 | eleqtrri 2700 | 1 ⊢ 𝑊 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ∩ cin 3573 {csn 4177 {cpr 4179 {ctp 4181 〈cop 4183 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 + caddc 9939 · cmul 9941 ndxcnx 15854 Basecbs 15857 ↾s cress 15858 +gcplusg 15941 Scalarcsca 15944 ·𝑠 cvsca 15945 DivRingcdr 18747 SubRingcsubrg 18776 LModclmod 18863 LVecclvec 19102 ℂfldccnfld 19746 ℂModcclm 22862 ℂVecccvs 22923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-subg 17591 df-cmn 18195 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-subrg 18778 df-lmod 18865 df-lvec 19103 df-cnfld 19747 df-clm 22863 df-cvs 22924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |