MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Structured version   Visualization version   GIF version

Definition df-fun 5890
Description: Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun cos is true once we define cosine (df-cos 14801). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4729 with the maps-to notation (see df-mpt 4730 and df-mpt2 6655). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5891), a function with a given domain and codomain (df-f 5892), a one-to-one function (df-f1 5893), an onto function (df-fo 5894), or a one-to-one onto function (df-f1o 5895). For alternate definitions, see dffun2 5898, dffun3 5899, dffun4 5900, dffun5 5901, dffun6 5903, dffun7 5915, dffun8 5916, and dffun9 5917. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class 𝐴
21wfun 5882 . 2 wff Fun 𝐴
31wrel 5119 . . 3 wff Rel 𝐴
41ccnv 5113 . . . . 5 class 𝐴
51, 4ccom 5118 . . . 4 class (𝐴𝐴)
6 cid 5023 . . . 4 class I
75, 6wss 3574 . . 3 wff (𝐴𝐴) ⊆ I
83, 7wa 384 . 2 wff (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )
92, 8wb 196 1 wff (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
Colors of variables: wff setvar class
This definition is referenced by:  dffun2  5898  funrel  5905  funss  5907  nffun  5911  funi  5920  funcocnv2  6161  dffv2  6271
  Copyright terms: Public domain W3C validator