![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun9 | Structured version Visualization version GIF version |
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
dffun9 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun7 5915 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)) | |
2 | vex 3203 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 3203 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brelrn 5356 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
5 | 4 | pm4.71ri 665 | . . . . . 6 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
6 | 5 | mobii 2493 | . . . . 5 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
7 | df-rmo 2920 | . . . . 5 ⊢ (∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) | |
8 | 6, 7 | bitr4i 267 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
9 | 8 | ralbii 2980 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦) |
10 | 9 | anbi2i 730 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
11 | 1, 10 | bitri 264 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∃*wmo 2471 ∀wral 2912 ∃*wrmo 2915 class class class wbr 4653 dom cdm 5114 ran crn 5115 Rel wrel 5119 Fun wfun 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 |
This theorem is referenced by: brdom4 9352 |
Copyright terms: Public domain | W3C validator |