![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpt2 | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)." An extension of df-mpt 4730 for two arguments. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt2 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | vy | . . 3 setvar 𝑦 | |
3 | cA | . . 3 class 𝐴 | |
4 | cB | . . 3 class 𝐵 | |
5 | cC | . . 3 class 𝐶 | |
6 | 1, 2, 3, 4, 5 | cmpt2 6652 | . 2 class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
7 | 1 | cv 1482 | . . . . . 6 class 𝑥 |
8 | 7, 3 | wcel 1990 | . . . . 5 wff 𝑥 ∈ 𝐴 |
9 | 2 | cv 1482 | . . . . . 6 class 𝑦 |
10 | 9, 4 | wcel 1990 | . . . . 5 wff 𝑦 ∈ 𝐵 |
11 | 8, 10 | wa 384 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
12 | vz | . . . . . 6 setvar 𝑧 | |
13 | 12 | cv 1482 | . . . . 5 class 𝑧 |
14 | 13, 5 | wceq 1483 | . . . 4 wff 𝑧 = 𝐶 |
15 | 11, 14 | wa 384 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
16 | 15, 1, 2, 12 | coprab 6651 | . 2 class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
17 | 6, 16 | wceq 1483 | 1 wff (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpt2eq123 6714 mpt2eq123dva 6716 mpt2eq3dva 6719 nfmpt21 6722 nfmpt22 6723 nfmpt2 6724 mpt20 6725 cbvmpt2x 6733 mpt2v 6750 mpt2mptx 6751 resmpt2 6758 mpt2fun 6762 mpt22eqb 6769 rnmpt2 6770 reldmmpt2 6771 elrnmpt2res 6774 ovmpt4g 6783 mpt2ndm0 6875 elmpt2cl 6876 fmpt2x 7236 bropopvvv 7255 bropfvvvv 7257 tposmpt2 7389 erovlem 7843 xpcomco 8050 omxpenlem 8061 cpnnen 14958 mpt2mptxf 29477 df1stres 29481 df2ndres 29482 f1od2 29499 sxbrsigalem5 30350 dmscut 31918 bj-dfmpt2a 33071 csbmpt22g 33177 uncf 33388 unccur 33392 mpt2bi123f 33971 cbvmpt22 39277 cbvmpt21 39278 mpt2mptx2 42113 cbvmpt2x2 42114 |
Copyright terms: Public domain | W3C validator |