| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-idp | Structured version Visualization version GIF version | ||
| Description: Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-idp | ⊢ Xp = ( I ↾ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidp 23941 | . 2 class Xp | |
| 2 | cid 5023 | . . 3 class I | |
| 3 | cc 9934 | . . 3 class ℂ | |
| 4 | 2, 3 | cres 5116 | . 2 class ( I ↾ ℂ) |
| 5 | 1, 4 | wceq 1483 | 1 wff Xp = ( I ↾ ℂ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: plyid 23965 coeidp 24019 dgrid 24020 plyremlem 24059 qaa 24078 taylply2 24122 ftalem7 24805 rngunsnply 37743 |
| Copyright terms: Public domain | W3C validator |