Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Visualization version   GIF version

Theorem rngunsnply 37743
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b (𝜑𝐵 ∈ (SubRing‘ℂfld))
rngunsnply.x (𝜑𝑋 ∈ ℂ)
rngunsnply.s (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
Assertion
Ref Expression
rngunsnply (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Distinct variable groups:   𝜑,𝑝   𝐵,𝑝   𝑋,𝑝   𝑉,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem rngunsnply
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3 (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
21eleq2d 2687 . 2 (𝜑 → (𝑉𝑆𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
3 cnring 19768 . . . . . . 7 fld ∈ Ring
43a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ Ring)
5 cnfldbas 19750 . . . . . . 7 ℂ = (Base‘ℂfld)
65a1i 11 . . . . . 6 (𝜑 → ℂ = (Base‘ℂfld))
7 rngunsnply.b . . . . . . . 8 (𝜑𝐵 ∈ (SubRing‘ℂfld))
85subrgss 18781 . . . . . . . 8 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐵 ⊆ ℂ)
10 rngunsnply.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
1110snssd 4340 . . . . . . 7 (𝜑 → {𝑋} ⊆ ℂ)
129, 11unssd 3789 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ℂ)
13 eqidd 2623 . . . . . 6 (𝜑 → (RingSpan‘ℂfld) = (RingSpan‘ℂfld))
14 eqidd 2623 . . . . . 6 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
15 eqidd 2623 . . . . . . 7 (𝜑 → (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) = (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
16 cnfld0 19770 . . . . . . . 8 0 = (0g‘ℂfld)
1716a1i 11 . . . . . . 7 (𝜑 → 0 = (0g‘ℂfld))
18 cnfldadd 19751 . . . . . . . 8 + = (+g‘ℂfld)
1918a1i 11 . . . . . . 7 (𝜑 → + = (+g‘ℂfld))
20 plyf 23954 . . . . . . . . . . . 12 (𝑝 ∈ (Poly‘𝐵) → 𝑝:ℂ⟶ℂ)
21 ffvelrn 6357 . . . . . . . . . . . 12 ((𝑝:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑝𝑋) ∈ ℂ)
2220, 10, 21syl2anr 495 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ℂ)
23 eleq1 2689 . . . . . . . . . . 11 (𝑎 = (𝑝𝑋) → (𝑎 ∈ ℂ ↔ (𝑝𝑋) ∈ ℂ))
2422, 23syl5ibrcom 237 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2524rexlimdva 3031 . . . . . . . . 9 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2625ss2abdv 3675 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ {𝑎𝑎 ∈ ℂ})
27 abid2 2745 . . . . . . . . 9 {𝑎𝑎 ∈ ℂ} = ℂ
2827, 5eqtri 2644 . . . . . . . 8 {𝑎𝑎 ∈ ℂ} = (Base‘ℂfld)
2926, 28syl6sseq 3651 . . . . . . 7 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ (Base‘ℂfld))
30 abid2 2745 . . . . . . . . 9 {𝑎𝑎𝐵} = 𝐵
31 plyconst 23962 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℂ ∧ 𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
329, 31sylan 488 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
3310adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑋 ∈ ℂ)
34 vex 3203 . . . . . . . . . . . . . . 15 𝑎 ∈ V
3534fvconst2 6469 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3633, 35syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3736eqcomd 2628 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎 = ((ℂ × {𝑎})‘𝑋))
38 fveq1 6190 . . . . . . . . . . . . . 14 (𝑝 = (ℂ × {𝑎}) → (𝑝𝑋) = ((ℂ × {𝑎})‘𝑋))
3938eqeq2d 2632 . . . . . . . . . . . . 13 (𝑝 = (ℂ × {𝑎}) → (𝑎 = (𝑝𝑋) ↔ 𝑎 = ((ℂ × {𝑎})‘𝑋)))
4039rspcev 3309 . . . . . . . . . . . 12 (((ℂ × {𝑎}) ∈ (Poly‘𝐵) ∧ 𝑎 = ((ℂ × {𝑎})‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4132, 37, 40syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4241ex 450 . . . . . . . . . 10 (𝜑 → (𝑎𝐵 → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)))
4342ss2abdv 3675 . . . . . . . . 9 (𝜑 → {𝑎𝑎𝐵} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
4430, 43syl5eqssr 3650 . . . . . . . 8 (𝜑𝐵 ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
45 subrgsubg 18786 . . . . . . . . . 10 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ∈ (SubGrp‘ℂfld))
467, 45syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (SubGrp‘ℂfld))
4716subg0cl 17602 . . . . . . . . 9 (𝐵 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝐵)
4846, 47syl 17 . . . . . . . 8 (𝜑 → 0 ∈ 𝐵)
4944, 48sseldd 3604 . . . . . . 7 (𝜑 → 0 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
50 biid 251 . . . . . . . . 9 (𝜑𝜑)
51 vex 3203 . . . . . . . . . 10 𝑏 ∈ V
52 eqeq1 2626 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎 = (𝑝𝑋) ↔ 𝑏 = (𝑝𝑋)))
5352rexbidv 3052 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋)))
54 fveq1 6190 . . . . . . . . . . . . 13 (𝑝 = 𝑒 → (𝑝𝑋) = (𝑒𝑋))
5554eqeq2d 2632 . . . . . . . . . . . 12 (𝑝 = 𝑒 → (𝑏 = (𝑝𝑋) ↔ 𝑏 = (𝑒𝑋)))
5655cbvrexv 3172 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
5753, 56syl6bb 276 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)))
5851, 57elab 3350 . . . . . . . . 9 (𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
59 vex 3203 . . . . . . . . . 10 𝑐 ∈ V
60 eqeq1 2626 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎 = (𝑝𝑋) ↔ 𝑐 = (𝑝𝑋)))
6160rexbidv 3052 . . . . . . . . . . 11 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋)))
62 fveq1 6190 . . . . . . . . . . . . 13 (𝑝 = 𝑑 → (𝑝𝑋) = (𝑑𝑋))
6362eqeq2d 2632 . . . . . . . . . . . 12 (𝑝 = 𝑑 → (𝑐 = (𝑝𝑋) ↔ 𝑐 = (𝑑𝑋)))
6463cbvrexv 3172 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
6561, 64syl6bb 276 . . . . . . . . . 10 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)))
6659, 65elab 3350 . . . . . . . . 9 (𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
67 simplr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
68 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 ∈ (Poly‘𝐵))
6918subrgacl 18791 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
70693expb 1266 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
717, 70sylan 488 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7271adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7372adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7467, 68, 73plyadd 23973 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵))
75 plyf 23954 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ (Poly‘𝐵) → 𝑒:ℂ⟶ℂ)
76 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (𝑒:ℂ⟶ℂ → 𝑒 Fn ℂ)
7775, 76syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (Poly‘𝐵) → 𝑒 Fn ℂ)
7877ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
79 plyf 23954 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (Poly‘𝐵) → 𝑑:ℂ⟶ℂ)
80 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (𝑑:ℂ⟶ℂ → 𝑑 Fn ℂ)
8179, 80syl 17 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (Poly‘𝐵) → 𝑑 Fn ℂ)
8281adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 Fn ℂ)
83 cnex 10017 . . . . . . . . . . . . . . . . . 18 ℂ ∈ V
8483a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ℂ ∈ V)
8510ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
86 fnfvof 6911 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8778, 82, 84, 85, 86syl22anc 1327 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8887eqcomd 2628 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋))
89 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 + 𝑑) → (𝑝𝑋) = ((𝑒𝑓 + 𝑑)‘𝑋))
9089eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 + 𝑑) → (((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)))
9190rspcev 3309 . . . . . . . . . . . . . . 15 (((𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
9274, 88, 91syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
93 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) + 𝑐) = ((𝑒𝑋) + (𝑑𝑋)))
9493eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9594rexbidv 3052 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9692, 95syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9796rexlimdva 3031 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
98 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 + 𝑐) = ((𝑒𝑋) + 𝑐))
9998eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
10099rexbidv 3052 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
101100imbi2d 330 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋))))
10297, 101syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
103102rexlimdva 3031 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
1041033imp 1256 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
10550, 58, 66, 104syl3anb 1369 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
106 ovex 6678 . . . . . . . . 9 (𝑏 + 𝑐) ∈ V
107 eqeq1 2626 . . . . . . . . . 10 (𝑎 = (𝑏 + 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 + 𝑐) = (𝑝𝑋)))
108107rexbidv 3052 . . . . . . . . 9 (𝑎 = (𝑏 + 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)))
109106, 108elab 3350 . . . . . . . 8 ((𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
110105, 109sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
111 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
112 cnfldneg 19772 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
113111, 112mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) = -1)
114 cnfld1 19771 . . . . . . . . . . . . . . . . . . . 20 1 = (1r‘ℂfld)
115114subrg1cl 18788 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐵)
1167, 115syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ 𝐵)
117 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (invg‘ℂfld) = (invg‘ℂfld)
118117subginvcl 17603 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐵) → ((invg‘ℂfld)‘1) ∈ 𝐵)
11946, 116, 118syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐵)
120113, 119eqeltrrd 2702 . . . . . . . . . . . . . . . 16 (𝜑 → -1 ∈ 𝐵)
121 plyconst 23962 . . . . . . . . . . . . . . . 16 ((𝐵 ⊆ ℂ ∧ -1 ∈ 𝐵) → (ℂ × {-1}) ∈ (Poly‘𝐵))
1229, 120, 121syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝐵))
123122adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) ∈ (Poly‘𝐵))
124 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
125 cnfldmul 19752 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
126125subrgmcl 18792 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
1271263expb 1266 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
1287, 127sylan 488 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
129128adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
130123, 124, 72, 129plymul 23974 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵))
131 ffvelrn 6357 . . . . . . . . . . . . . . . 16 ((𝑒:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑒𝑋) ∈ ℂ)
13275, 10, 131syl2anr 495 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑒𝑋) ∈ ℂ)
133 cnfldneg 19772 . . . . . . . . . . . . . . 15 ((𝑒𝑋) ∈ ℂ → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
134132, 133syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
135 negex 10279 . . . . . . . . . . . . . . . . 17 -1 ∈ V
136 fnconstg 6093 . . . . . . . . . . . . . . . . 17 (-1 ∈ V → (ℂ × {-1}) Fn ℂ)
137135, 136mp1i 13 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) Fn ℂ)
13877adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
13983a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ℂ ∈ V)
14010adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
141 fnfvof 6911 . . . . . . . . . . . . . . . 16 ((((ℂ × {-1}) Fn ℂ ∧ 𝑒 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
142137, 138, 139, 140, 141syl22anc 1327 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
143135fvconst2 6469 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℂ → ((ℂ × {-1})‘𝑋) = -1)
144140, 143syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1})‘𝑋) = -1)
145144oveq1d 6665 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1})‘𝑋) · (𝑒𝑋)) = (-1 · (𝑒𝑋)))
146132mulm1d 10482 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (-1 · (𝑒𝑋)) = -(𝑒𝑋))
147142, 145, 1463eqtrd 2660 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = -(𝑒𝑋))
148134, 147eqtr4d 2659 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
149 fveq1 6190 . . . . . . . . . . . . . . 15 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (𝑝𝑋) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
150149eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)))
151150rspcev 3309 . . . . . . . . . . . . 13 ((((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵) ∧ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
152130, 148, 151syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
153 fveq2 6191 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((invg‘ℂfld)‘𝑏) = ((invg‘ℂfld)‘(𝑒𝑋)))
154153eqeq1d 2624 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
155154rexbidv 3052 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
156152, 155syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
157156rexlimdva 3031 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
158157imp 445 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
15958, 158sylan2b 492 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
160 fvex 6201 . . . . . . . . 9 ((invg‘ℂfld)‘𝑏) ∈ V
161 eqeq1 2626 . . . . . . . . . 10 (𝑎 = ((invg‘ℂfld)‘𝑏) → (𝑎 = (𝑝𝑋) ↔ ((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
162161rexbidv 3052 . . . . . . . . 9 (𝑎 = ((invg‘ℂfld)‘𝑏) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
163160, 162elab 3350 . . . . . . . 8 (((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
164159, 163sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
165114a1i 11 . . . . . . 7 (𝜑 → 1 = (1r‘ℂfld))
166125a1i 11 . . . . . . 7 (𝜑 → · = (.r‘ℂfld))
16744, 116sseldd 3604 . . . . . . 7 (𝜑 → 1 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
168129adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
16967, 68, 73, 168plymul 23974 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵))
170 fnfvof 6911 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
17178, 82, 84, 85, 170syl22anc 1327 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
172171eqcomd 2628 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋))
173 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 · 𝑑) → (𝑝𝑋) = ((𝑒𝑓 · 𝑑)‘𝑋))
174173eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 · 𝑑) → (((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)))
175174rspcev 3309 . . . . . . . . . . . . . . 15 (((𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
176169, 172, 175syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
177 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) · 𝑐) = ((𝑒𝑋) · (𝑑𝑋)))
178177eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
179178rexbidv 3052 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
180176, 179syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
181180rexlimdva 3031 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
182 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 · 𝑐) = ((𝑒𝑋) · 𝑐))
183182eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
184183rexbidv 3052 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
185184imbi2d 330 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋))))
186181, 185syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
187186rexlimdva 3031 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
1881873imp 1256 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
18950, 58, 66, 188syl3anb 1369 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
190 ovex 6678 . . . . . . . . 9 (𝑏 · 𝑐) ∈ V
191 eqeq1 2626 . . . . . . . . . 10 (𝑎 = (𝑏 · 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 · 𝑐) = (𝑝𝑋)))
192191rexbidv 3052 . . . . . . . . 9 (𝑎 = (𝑏 · 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)))
193190, 192elab 3350 . . . . . . . 8 ((𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
194189, 193sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
19515, 17, 19, 29, 49, 110, 164, 165, 166, 167, 194, 4issubrngd2 19189 . . . . . 6 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∈ (SubRing‘ℂfld))
196 plyid 23965 . . . . . . . . . . 11 ((𝐵 ⊆ ℂ ∧ 1 ∈ 𝐵) → Xp ∈ (Poly‘𝐵))
1979, 116, 196syl2anc 693 . . . . . . . . . 10 (𝜑Xp ∈ (Poly‘𝐵))
198 df-idp 23945 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
199198fveq1i 6192 . . . . . . . . . . 11 (Xp𝑋) = (( I ↾ ℂ)‘𝑋)
200 fvresi 6439 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (( I ↾ ℂ)‘𝑋) = 𝑋)
20110, 200syl 17 . . . . . . . . . . 11 (𝜑 → (( I ↾ ℂ)‘𝑋) = 𝑋)
202199, 201syl5req 2669 . . . . . . . . . 10 (𝜑𝑋 = (Xp𝑋))
203 fveq1 6190 . . . . . . . . . . . 12 (𝑝 = Xp → (𝑝𝑋) = (Xp𝑋))
204203eqeq2d 2632 . . . . . . . . . . 11 (𝑝 = Xp → (𝑋 = (𝑝𝑋) ↔ 𝑋 = (Xp𝑋)))
205204rspcev 3309 . . . . . . . . . 10 ((Xp ∈ (Poly‘𝐵) ∧ 𝑋 = (Xp𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
206197, 202, 205syl2anc 693 . . . . . . . . 9 (𝜑 → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
207 eqeq1 2626 . . . . . . . . . . . 12 (𝑎 = 𝑋 → (𝑎 = (𝑝𝑋) ↔ 𝑋 = (𝑝𝑋)))
208207rexbidv 3052 . . . . . . . . . . 11 (𝑎 = 𝑋 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
209208elabg 3351 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
21010, 209syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
211206, 210mpbird 247 . . . . . . . 8 (𝜑𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
212211snssd 4340 . . . . . . 7 (𝜑 → {𝑋} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
21344, 212unssd 3789 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
2144, 6, 12, 13, 14, 195, 213rgspnmin 37741 . . . . 5 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
215214sseld 3602 . . . 4 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → 𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
216 fvex 6201 . . . . . . 7 (𝑝𝑋) ∈ V
217 eleq1 2689 . . . . . . 7 (𝑉 = (𝑝𝑋) → (𝑉 ∈ V ↔ (𝑝𝑋) ∈ V))
218216, 217mpbiri 248 . . . . . 6 (𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
219218rexlimivw 3029 . . . . 5 (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
220 eqeq1 2626 . . . . . 6 (𝑎 = 𝑉 → (𝑎 = (𝑝𝑋) ↔ 𝑉 = (𝑝𝑋)))
221220rexbidv 3052 . . . . 5 (𝑎 = 𝑉 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
222219, 221elab3 3358 . . . 4 (𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋))
223215, 222syl6ib 241 . . 3 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2244, 6, 12, 13, 14rgspncl 37739 . . . . . . 7 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
225224adantr 481 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
226 simpr 477 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑝 ∈ (Poly‘𝐵))
2274, 6, 12, 13, 14rgspnssid 37740 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
228227unssbd 3791 . . . . . . . 8 (𝜑 → {𝑋} ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
229 snidg 4206 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ {𝑋})
23010, 229syl 17 . . . . . . . 8 (𝜑𝑋 ∈ {𝑋})
231228, 230sseldd 3604 . . . . . . 7 (𝜑𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
232231adantr 481 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
233227unssad 3790 . . . . . . 7 (𝜑𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
234233adantr 481 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
235225, 226, 232, 234cnsrplycl 37737 . . . . 5 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
236 eleq1 2689 . . . . 5 (𝑉 = (𝑝𝑋) → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
237235, 236syl5ibrcom 237 . . . 4 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
238237rexlimdva 3031 . . 3 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
239223, 238impbid 202 . 2 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2402, 239bitrd 268 1 (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  cun 3572  wss 3574  {csn 4177   I cid 5023   × cxp 5112  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  invgcminusg 17423  SubGrpcsubg 17588  1rcur 18501  Ringcrg 18547  SubRingcsubrg 18776  RingSpancrgspn 18777  fldccnfld 19746  Polycply 23940  Xpcidp 23941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-rgspn 18779  df-cnfld 19747  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator