MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaa Structured version   Visualization version   GIF version

Theorem qaa 24078
Description: Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
qaa (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)

Proof of Theorem qaa
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qcn 11802 . 2 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2 qsscn 11799 . . . . . . 7 ℚ ⊆ ℂ
3 1z 11407 . . . . . . . 8 1 ∈ ℤ
4 zq 11794 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ ℚ)
53, 4ax-mp 5 . . . . . . 7 1 ∈ ℚ
6 plyid 23965 . . . . . . 7 ((ℚ ⊆ ℂ ∧ 1 ∈ ℚ) → Xp ∈ (Poly‘ℚ))
72, 5, 6mp2an 708 . . . . . 6 Xp ∈ (Poly‘ℚ)
87a1i 11 . . . . 5 (𝐴 ∈ ℚ → Xp ∈ (Poly‘ℚ))
9 plyconst 23962 . . . . . 6 ((ℚ ⊆ ℂ ∧ 𝐴 ∈ ℚ) → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
102, 9mpan 706 . . . . 5 (𝐴 ∈ ℚ → (ℂ × {𝐴}) ∈ (Poly‘ℚ))
11 qaddcl 11804 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ)
1211adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ)
13 qmulcl 11806 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ)
1413adantl 482 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 · 𝑦) ∈ ℚ)
15 qnegcl 11805 . . . . . . 7 (1 ∈ ℚ → -1 ∈ ℚ)
165, 15ax-mp 5 . . . . . 6 -1 ∈ ℚ
1716a1i 11 . . . . 5 (𝐴 ∈ ℚ → -1 ∈ ℚ)
188, 10, 12, 14, 17plysub 23975 . . . 4 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℚ))
19 peano2cn 10208 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
201, 19syl 17 . . . . 5 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℂ)
21 fnresi 6008 . . . . . . . . . . 11 ( I ↾ ℂ) Fn ℂ
22 df-idp 23945 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
2322fneq1i 5985 . . . . . . . . . . 11 (Xp Fn ℂ ↔ ( I ↾ ℂ) Fn ℂ)
2421, 23mpbir 221 . . . . . . . . . 10 Xp Fn ℂ
2524a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → Xp Fn ℂ)
26 fnconstg 6093 . . . . . . . . 9 (𝐴 ∈ ℚ → (ℂ × {𝐴}) Fn ℂ)
27 cnex 10017 . . . . . . . . . 10 ℂ ∈ V
2827a1i 11 . . . . . . . . 9 (𝐴 ∈ ℚ → ℂ ∈ V)
29 inidm 3822 . . . . . . . . 9 (ℂ ∩ ℂ) = ℂ
3022fveq1i 6192 . . . . . . . . . . 11 (Xp‘(𝐴 + 1)) = (( I ↾ ℂ)‘(𝐴 + 1))
31 fvresi 6439 . . . . . . . . . . 11 ((𝐴 + 1) ∈ ℂ → (( I ↾ ℂ)‘(𝐴 + 1)) = (𝐴 + 1))
3230, 31syl5eq 2668 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℂ → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
3332adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → (Xp‘(𝐴 + 1)) = (𝐴 + 1))
34 fvconst2g 6467 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((ℂ × {𝐴})‘(𝐴 + 1)) = 𝐴)
3525, 26, 28, 28, 29, 33, 34ofval 6906 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (𝐴 + 1) ∈ ℂ) → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
3620, 35mpdan 702 . . . . . . 7 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = ((𝐴 + 1) − 𝐴))
37 ax-1cn 9994 . . . . . . . 8 1 ∈ ℂ
38 pncan2 10288 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 𝐴) = 1)
391, 37, 38sylancl 694 . . . . . . 7 (𝐴 ∈ ℚ → ((𝐴 + 1) − 𝐴) = 1)
4036, 39eqtrd 2656 . . . . . 6 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) = 1)
41 ax-1ne0 10005 . . . . . . 7 1 ≠ 0
4241a1i 11 . . . . . 6 (𝐴 ∈ ℚ → 1 ≠ 0)
4340, 42eqnetrd 2861 . . . . 5 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0)
44 ne0p 23963 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ ((Xp𝑓 − (ℂ × {𝐴}))‘(𝐴 + 1)) ≠ 0) → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
4520, 43, 44syl2anc 693 . . . 4 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝)
46 eldifsn 4317 . . . 4 ((Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ ((Xp𝑓 − (ℂ × {𝐴})) ∈ (Poly‘ℚ) ∧ (Xp𝑓 − (ℂ × {𝐴})) ≠ 0𝑝))
4718, 45, 46sylanbrc 698 . . 3 (𝐴 ∈ ℚ → (Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}))
4822fveq1i 6192 . . . . . . . 8 (Xp𝐴) = (( I ↾ ℂ)‘𝐴)
49 fvresi 6439 . . . . . . . 8 (𝐴 ∈ ℂ → (( I ↾ ℂ)‘𝐴) = 𝐴)
5048, 49syl5eq 2668 . . . . . . 7 (𝐴 ∈ ℂ → (Xp𝐴) = 𝐴)
5150adantl 482 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → (Xp𝐴) = 𝐴)
52 fvconst2g 6467 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((ℂ × {𝐴})‘𝐴) = 𝐴)
5325, 26, 28, 28, 29, 51, 52ofval 6906 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐴 ∈ ℂ) → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
541, 53mpdan 702 . . . 4 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = (𝐴𝐴))
551subidd 10380 . . . 4 (𝐴 ∈ ℚ → (𝐴𝐴) = 0)
5654, 55eqtrd 2656 . . 3 (𝐴 ∈ ℚ → ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0)
57 fveq1 6190 . . . . 5 (𝑓 = (Xp𝑓 − (ℂ × {𝐴})) → (𝑓𝐴) = ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴))
5857eqeq1d 2624 . . . 4 (𝑓 = (Xp𝑓 − (ℂ × {𝐴})) → ((𝑓𝐴) = 0 ↔ ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0))
5958rspcev 3309 . . 3 (((Xp𝑓 − (ℂ × {𝐴})) ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((Xp𝑓 − (ℂ × {𝐴}))‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
6047, 56, 59syl2anc 693 . 2 (𝐴 ∈ ℚ → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
61 elqaa 24077 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
621, 60, 61sylanbrc 698 1 (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  {csn 4177   I cid 5023   × cxp 5112  cres 5116   Fn wfn 5883  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  cz 11377  cq 11788  0𝑝c0p 23436  Polycply 23940  Xpcidp 23941  𝔸caa 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-aa 24070
This theorem is referenced by:  qssaa  24079
  Copyright terms: Public domain W3C validator