![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version |
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cn0 11292 | . 2 class ℕ0 | |
2 | cn 11020 | . . 3 class ℕ | |
3 | cc0 9936 | . . . 4 class 0 | |
4 | 3 | csn 4177 | . . 3 class {0} |
5 | 2, 4 | cun 3572 | . 2 class (ℕ ∪ {0}) |
6 | 1, 5 | wceq 1483 | 1 wff ℕ0 = (ℕ ∪ {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: elnn0 11294 nnssnn0 11295 nn0ssre 11296 nn0ex 11298 dfn2 11305 nn0addcl 11328 nn0mulcl 11329 nn0ssz 11398 dvdsprmpweqnn 15589 cply1coe0bi 19670 m2cpminvid2lem 20559 pmatcollpw3fi1 20593 dfrtrcl4 38030 corcltrcl 38031 cotrclrcl 38034 |
Copyright terms: Public domain | W3C validator |