MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 11293
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 11292 . 2 class 0
2 cn 11020 . . 3 class
3 cc0 9936 . . . 4 class 0
43csn 4177 . . 3 class {0}
52, 4cun 3572 . 2 class (ℕ ∪ {0})
61, 5wceq 1483 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  11294  nnssnn0  11295  nn0ssre  11296  nn0ex  11298  dfn2  11305  nn0addcl  11328  nn0mulcl  11329  nn0ssz  11398  dvdsprmpweqnn  15589  cply1coe0bi  19670  m2cpminvid2lem  20559  pmatcollpw3fi1  20593  dfrtrcl4  38030  corcltrcl  38031  cotrclrcl  38034
  Copyright terms: Public domain W3C validator