| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 2 | 1 | anim1i 592 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) → (𝑅 ∈ Ring ∧ 𝑠 ∈ 𝐾)) |
| 3 | 2 | adantr 481 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) ∧ 𝑀 = (𝐴‘𝑠)) → (𝑅 ∈ Ring ∧ 𝑠 ∈ 𝐾)) |
| 4 | | cply1coe0.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝑅) |
| 5 | | cply1coe0.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 6 | | cply1coe0.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
| 7 | | cply1coe0.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
| 8 | | cply1coe0.a |
. . . . . . 7
⊢ 𝐴 = (algSc‘𝑃) |
| 9 | 4, 5, 6, 7, 8 | cply1coe0 19669 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝐾) → ∀𝑛 ∈ ℕ
((coe1‘(𝐴‘𝑠))‘𝑛) = 0 ) |
| 10 | 3, 9 | syl 17 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) ∧ 𝑀 = (𝐴‘𝑠)) → ∀𝑛 ∈ ℕ
((coe1‘(𝐴‘𝑠))‘𝑛) = 0 ) |
| 11 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑀 = (𝐴‘𝑠) → (coe1‘𝑀) =
(coe1‘(𝐴‘𝑠))) |
| 12 | 11 | fveq1d 6193 |
. . . . . . . 8
⊢ (𝑀 = (𝐴‘𝑠) → ((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘𝑠))‘𝑛)) |
| 13 | 12 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑀 = (𝐴‘𝑠) → (((coe1‘𝑀)‘𝑛) = 0 ↔
((coe1‘(𝐴‘𝑠))‘𝑛) = 0 )) |
| 14 | 13 | ralbidv 2986 |
. . . . . 6
⊢ (𝑀 = (𝐴‘𝑠) → (∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ
((coe1‘(𝐴‘𝑠))‘𝑛) = 0 )) |
| 15 | 14 | adantl 482 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) ∧ 𝑀 = (𝐴‘𝑠)) → (∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ
((coe1‘(𝐴‘𝑠))‘𝑛) = 0 )) |
| 16 | 10, 15 | mpbird 247 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) ∧ 𝑀 = (𝐴‘𝑠)) → ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) |
| 17 | 16 | ex 450 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ 𝐾) → (𝑀 = (𝐴‘𝑠) → ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) |
| 18 | 17 | rexlimdva 3031 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠) → ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) |
| 19 | | simpr 477 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 20 | | 0nn0 11307 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
| 21 | | eqid 2622 |
. . . . . . 7
⊢
(coe1‘𝑀) = (coe1‘𝑀) |
| 22 | 21, 7, 6, 4 | coe1fvalcl 19582 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0) →
((coe1‘𝑀)‘0) ∈ 𝐾) |
| 23 | 19, 20, 22 | sylancl 694 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀)‘0) ∈ 𝐾) |
| 24 | 23 | adantr 481 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) →
((coe1‘𝑀)‘0) ∈ 𝐾) |
| 25 | | fveq2 6191 |
. . . . . 6
⊢ (𝑠 = ((coe1‘𝑀)‘0) → (𝐴‘𝑠) = (𝐴‘((coe1‘𝑀)‘0))) |
| 26 | 25 | eqeq2d 2632 |
. . . . 5
⊢ (𝑠 = ((coe1‘𝑀)‘0) → (𝑀 = (𝐴‘𝑠) ↔ 𝑀 = (𝐴‘((coe1‘𝑀)‘0)))) |
| 27 | 26 | adantl 482 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) ∧ 𝑠 = ((coe1‘𝑀)‘0)) → (𝑀 = (𝐴‘𝑠) ↔ 𝑀 = (𝐴‘((coe1‘𝑀)‘0)))) |
| 28 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 29 | 6 | ply1ring 19618 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 30 | 6 | ply1lmod 19622 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 31 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 32 | 8, 28, 29, 30, 31, 7 | asclf 19337 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵) |
| 33 | 32 | adantr 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵) |
| 34 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 35 | 21, 7, 6, 34 | coe1fvalcl 19582 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0) →
((coe1‘𝑀)‘0) ∈ (Base‘𝑅)) |
| 36 | 19, 20, 35 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀)‘0) ∈
(Base‘𝑅)) |
| 37 | 6 | ply1sca 19623 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 38 | 37 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
| 39 | 38 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 40 | 39 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
| 41 | 36, 40 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀)‘0) ∈
(Base‘(Scalar‘𝑃))) |
| 42 | 33, 41 | ffvelrnd 6360 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐴‘((coe1‘𝑀)‘0)) ∈ 𝐵) |
| 43 | 1, 19, 42 | 3jca 1242 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (𝐴‘((coe1‘𝑀)‘0)) ∈ 𝐵)) |
| 44 | 43 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (𝐴‘((coe1‘𝑀)‘0)) ∈ 𝐵)) |
| 45 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧
((coe1‘𝑀)‘𝑛) = 0 ) →
((coe1‘𝑀)‘𝑛) = 0 ) |
| 46 | 6, 8, 4, 5 | coe1scl 19657 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑀)‘0) ∈ 𝐾) → (coe1‘(𝐴‘((coe1‘𝑀)‘0))) = (𝑘 ∈ ℕ0
↦ if(𝑘 = 0,
((coe1‘𝑀)‘0), 0 ))) |
| 47 | 23, 46 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘(𝐴‘((coe1‘𝑀)‘0))) = (𝑘 ∈ ℕ0
↦ if(𝑘 = 0,
((coe1‘𝑀)‘0), 0 ))) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) →
(coe1‘(𝐴‘((coe1‘𝑀)‘0))) = (𝑘 ∈ ℕ0
↦ if(𝑘 = 0,
((coe1‘𝑀)‘0), 0 ))) |
| 49 | | nnne0 11053 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
| 50 | 49 | neneqd 2799 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → ¬
𝑛 = 0) |
| 51 | 50 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0) |
| 52 | 51 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑛 = 0) |
| 53 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0)) |
| 54 | 53 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0)) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0)) |
| 56 | 52, 55 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑘 = 0) |
| 57 | 56 | iffalsed 4097 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → if(𝑘 = 0, ((coe1‘𝑀)‘0), 0 ) = 0 ) |
| 58 | | nnnn0 11299 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 59 | 58 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 60 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) ∈ V |
| 61 | 5, 60 | eqeltri 2697 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 0 ∈ V) |
| 63 | 48, 57, 59, 62 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) = 0 ) |
| 64 | 63 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 0 =
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 65 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧
((coe1‘𝑀)‘𝑛) = 0 ) → 0 =
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 66 | 45, 65 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) ∧
((coe1‘𝑀)‘𝑛) = 0 ) →
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 67 | 66 | ex 450 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) →
(((coe1‘𝑀)‘𝑛) = 0 →
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛))) |
| 68 | 67 | ralimdva 2962 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 → ∀𝑛 ∈ ℕ
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛))) |
| 69 | 68 | imp 445 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 70 | 6, 8, 4 | ply1sclid 19658 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝑀)‘0) ∈ 𝐾) → ((coe1‘𝑀)‘0) =
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)) |
| 71 | 23, 70 | syldan 487 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀)‘0) =
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)) |
| 72 | 71 | adantr 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) →
((coe1‘𝑀)‘0) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)) |
| 73 | | df-n0 11293 |
. . . . . . . 8
⊢
ℕ0 = (ℕ ∪ {0}) |
| 74 | 73 | raleqi 3142 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ0 ((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪
{0})((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 75 | | c0ex 10034 |
. . . . . . . 8
⊢ 0 ∈
V |
| 76 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑛 = 0 →
((coe1‘𝑀)‘𝑛) = ((coe1‘𝑀)‘0)) |
| 77 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑛 = 0 →
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) =
((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)) |
| 78 | 76, 77 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑛 = 0 →
(((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ↔
((coe1‘𝑀)‘0) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0))) |
| 79 | 78 | ralunsn 4422 |
. . . . . . . 8
⊢ (0 ∈
V → (∀𝑛 ∈
(ℕ ∪ {0})((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ∧
((coe1‘𝑀)‘0) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)))) |
| 80 | 75, 79 | mp1i 13 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ (ℕ ∪
{0})((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ∧
((coe1‘𝑀)‘0) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)))) |
| 81 | 74, 80 | syl5bb 272 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ ℕ0
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) ∧
((coe1‘𝑀)‘0) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘0)))) |
| 82 | 69, 72, 81 | mpbir2and 957 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ0
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛)) |
| 83 | | eqid 2622 |
. . . . . 6
⊢
(coe1‘(𝐴‘((coe1‘𝑀)‘0))) =
(coe1‘(𝐴‘((coe1‘𝑀)‘0))) |
| 84 | 6, 7, 21, 83 | eqcoe1ply1eq 19667 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (𝐴‘((coe1‘𝑀)‘0)) ∈ 𝐵) → (∀𝑛 ∈ ℕ0
((coe1‘𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1‘𝑀)‘0)))‘𝑛) → 𝑀 = (𝐴‘((coe1‘𝑀)‘0)))) |
| 85 | 44, 82, 84 | sylc 65 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → 𝑀 = (𝐴‘((coe1‘𝑀)‘0))) |
| 86 | 24, 27, 85 | rspcedvd 3317 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 ) → ∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠)) |
| 87 | 86 | ex 450 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 → ∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠))) |
| 88 | 18, 87 | impbid 202 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) |