MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2lem Structured version   Visualization version   GIF version

Theorem m2cpminvid2lem 20559
Description: Lemma for m2cpminvid2 20560. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2lem.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2lem.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
m2cpminvid2lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝑥,𝑛   𝑦,𝑛
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem m2cpminvid2lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2lem.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid2lem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 eqid 2622 . . . . . . . 8 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
4 eqid 2622 . . . . . . . 8 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
51, 2, 3, 4cpmatelimp 20517 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
653impia 1261 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
7 simpr 477 . . . . . 6 ((𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
86, 7syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
98adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
10 oveq1 6657 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝑖𝑀𝑗) = (𝑥𝑀𝑗))
1110fveq2d 6195 . . . . . . . . . 10 (𝑖 = 𝑥 → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑗)))
1211fveq1d 6193 . . . . . . . . 9 (𝑖 = 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑗))‘𝑘))
1312eqeq1d 2624 . . . . . . . 8 (𝑖 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
1413ralbidv 2986 . . . . . . 7 (𝑖 = 𝑥 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
15 oveq2 6658 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑥𝑀𝑗) = (𝑥𝑀𝑦))
1615fveq2d 6195 . . . . . . . . . 10 (𝑗 = 𝑦 → (coe1‘(𝑥𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
1716fveq1d 6193 . . . . . . . . 9 (𝑗 = 𝑦 → ((coe1‘(𝑥𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑦))‘𝑘))
1817eqeq1d 2624 . . . . . . . 8 (𝑗 = 𝑦 → (((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1918ralbidv 2986 . . . . . . 7 (𝑗 = 𝑦 → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
2014, 19rspc2v 3322 . . . . . 6 ((𝑥𝑁𝑦𝑁) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
2120adantl 482 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
22 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑛 → ((coe1‘(𝑥𝑀𝑦))‘𝑘) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
2322eqeq1d 2624 . . . . . . 7 (𝑘 = 𝑛 → (((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)))
2423cbvralv 3171 . . . . . 6 (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅))
25 simpl2 1065 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
26 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
27 simprl 794 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
28 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑁𝑦𝑁) → 𝑦𝑁)
2928adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
301, 2, 3, 4cpmatpmat 20515 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
3130adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
323, 26, 4, 27, 29, 31matecld 20232 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘𝑃))
33 0nn0 11307 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
34 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
35 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
3634, 26, 2, 35coe1fvalcl 19582 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑀𝑦) ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3732, 33, 36sylancl 694 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3825, 37jca 554 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
3938adantr 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
40 eqid 2622 . . . . . . . . . . . . . . . 16 (algSc‘𝑃) = (algSc‘𝑃)
41 eqid 2622 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
422, 40, 35, 41coe1scl 19657 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
4339, 42syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
4443fveq1d 6193 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛))
45 eqidd 2623 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
46 eqeq1 2626 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
4746ifbid 4108 . . . . . . . . . . . . . . 15 (𝑙 = 𝑛 → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
4847adantl 482 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
49 nnnn0 11299 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5049adantl 482 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
51 fvex 6201 . . . . . . . . . . . . . . . 16 ((coe1‘(𝑥𝑀𝑦))‘0) ∈ V
52 fvex 6201 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
5351, 52ifex 4156 . . . . . . . . . . . . . . 15 if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V
5453a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V)
5545, 48, 50, 54fvmptd 6288 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
56 nnne0 11053 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5756neneqd 2799 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
5857adantl 482 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
5958iffalsed 4097 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = (0g𝑅))
6044, 55, 593eqtrd 2660 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = (0g𝑅))
61 eqcom 2629 . . . . . . . . . . . . 13 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) ↔ (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6261biimpi 206 . . . . . . . . . . . 12 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6360, 62sylan9eq 2676 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6463ex 450 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6564ralimdva 2962 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6665imp 445 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6738adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
682, 40, 35ply1sclid 19658 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
6968eqcomd 2628 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
7067, 69syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
7166, 70jca 554 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
7271ex 450 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7324, 72syl5bi 232 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7421, 73syld 47 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
759, 74mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
76 c0ex 10034 . . . 4 0 ∈ V
77 fveq2 6191 . . . . . 6 (𝑛 = 0 → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
78 fveq2 6191 . . . . . 6 (𝑛 = 0 → ((coe1‘(𝑥𝑀𝑦))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘0))
7977, 78eqeq12d 2637 . . . . 5 (𝑛 = 0 → (((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
8079ralunsn 4422 . . . 4 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
8176, 80mp1i 13 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
8275, 81mpbird 247 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
83 df-n0 11293 . . 3 0 = (ℕ ∪ {0})
8483raleqi 3142 . 2 (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
8582, 84sylibr 224 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  ifcif 4086  {csn 4177  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  cn 11020  0cn0 11292  Basecbs 15857  0gc0g 16100  Ringcrg 18547  algSccascl 19311  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   ConstPolyMat ccpmat 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-cpmat 20511
This theorem is referenced by:  m2cpminvid2  20560
  Copyright terms: Public domain W3C validator