MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmhm Structured version   Visualization version   GIF version

Theorem isnmhm 22550
Description: A normed module homomorphism is a left module homomorphism which is also a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
isnmhm (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))

Proof of Theorem isnmhm
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 22514 . . 3 NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)))
21elmpt2cl 6876 . 2 (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod))
3 oveq12 6659 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 LMHom 𝑡) = (𝑆 LMHom 𝑇))
4 oveq12 6659 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 NGHom 𝑡) = (𝑆 NGHom 𝑇))
53, 4ineq12d 3815 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))
6 ovex 6678 . . . . . 6 (𝑆 LMHom 𝑇) ∈ V
76inex1 4799 . . . . 5 ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ∈ V
85, 1, 7ovmpt2a 6791 . . . 4 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑆 NMHom 𝑇) = ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)))
98eleq2d 2687 . . 3 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ 𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇))))
10 elin 3796 . . 3 (𝐹 ∈ ((𝑆 LMHom 𝑇) ∩ (𝑆 NGHom 𝑇)) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))
119, 10syl6bb 276 . 2 ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
122, 11biadan2 674 1 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  cin 3573  (class class class)co 6650   LMHom clmhm 19019  NrmModcnlm 22385   NGHom cnghm 22510   NMHom cnmhm 22511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-nmhm 22514
This theorem is referenced by:  nmhmrcl1  22551  nmhmrcl2  22552  nmhmlmhm  22553  nmhmnghm  22554  isnmhm2  22556  idnmhm  22558  0nmhm  22559  nmhmco  22560  nmhmplusg  22561  nmhmcn  22920
  Copyright terms: Public domain W3C validator