MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1val Structured version   Visualization version   GIF version

Theorem om1val 22830
Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1val.o 𝑂 = (𝐽 Ω1 𝑌)
om1val.b (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
om1val.p (𝜑+ = (*𝑝𝐽))
om1val.k (𝜑𝐾 = (𝐽 ^ko II))
om1val.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1val.y (𝜑𝑌𝑋)
Assertion
Ref Expression
om1val (𝜑𝑂 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
Distinct variable groups:   𝑓,𝐽   𝜑,𝑓   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑓)   + (𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑋(𝑓)

Proof of Theorem om1val
Dummy variables 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om1val.o . 2 𝑂 = (𝐽 Ω1 𝑌)
2 df-om1 22806 . . . 4 Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩})
32a1i 11 . . 3 (𝜑 → Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩}))
4 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑗 = 𝐽)
54oveq2d 6666 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (II Cn 𝑗) = (II Cn 𝐽))
6 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝑦 = 𝑌)
76eqeq2d 2632 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑓‘0) = 𝑦 ↔ (𝑓‘0) = 𝑌))
86eqeq2d 2632 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑌))
97, 8anbi12d 747 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)))
105, 9rabeqbidv 3195 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
11 om1val.b . . . . . . 7 (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
1211adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
1310, 12eqtr4d 2659 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)} = 𝐵)
1413opeq2d 4409 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩ = ⟨(Base‘ndx), 𝐵⟩)
154fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (*𝑝𝑗) = (*𝑝𝐽))
16 om1val.p . . . . . . 7 (𝜑+ = (*𝑝𝐽))
1716adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → + = (*𝑝𝐽))
1815, 17eqtr4d 2659 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (*𝑝𝑗) = + )
1918opeq2d 4409 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(+g‘ndx), (*𝑝𝑗)⟩ = ⟨(+g‘ndx), + ⟩)
204oveq1d 6665 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 ^ko II) = (𝐽 ^ko II))
21 om1val.k . . . . . . 7 (𝜑𝐾 = (𝐽 ^ko II))
2221adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → 𝐾 = (𝐽 ^ko II))
2320, 22eqtr4d 2659 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → (𝑗 ^ko II) = 𝐾)
2423opeq2d 4409 . . . 4 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩ = ⟨(TopSet‘ndx), 𝐾⟩)
2514, 19, 24tpeq123d 4283 . . 3 ((𝜑 ∧ (𝑗 = 𝐽𝑦 = 𝑌)) → {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗 ^ko II)⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
26 unieq 4444 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2726adantl 482 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝐽)
28 om1val.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
29 toponuni 20719 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3028, 29syl 17 . . . . 5 (𝜑𝑋 = 𝐽)
3130adantr 481 . . . 4 ((𝜑𝑗 = 𝐽) → 𝑋 = 𝐽)
3227, 31eqtr4d 2659 . . 3 ((𝜑𝑗 = 𝐽) → 𝑗 = 𝑋)
33 topontop 20718 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3428, 33syl 17 . . 3 (𝜑𝐽 ∈ Top)
35 om1val.y . . 3 (𝜑𝑌𝑋)
36 tpex 6957 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩} ∈ V
3736a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩} ∈ V)
383, 25, 32, 34, 35, 37ovmpt2dx 6787 . 2 (𝜑 → (𝐽 Ω1 𝑌) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
391, 38syl5eq 2668 1 (𝜑𝑂 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐾⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  {ctp 4181  cop 4183   cuni 4436  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  TopSetcts 15947  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ^ko cxko 21364  IIcii 22678  *𝑝cpco 22800   Ω1 comi 22801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-topon 20716  df-om1 22806
This theorem is referenced by:  om1bas  22831  om1plusg  22834  om1tset  22835
  Copyright terms: Public domain W3C validator