MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 18718
Description: Define the ring isomorphism relation, analogous to df-gic 17702: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 18714 . 2 class 𝑟
2 crs 18713 . . . 4 class RingIso
32ccnv 5113 . . 3 class RingIso
4 cvv 3200 . . . 4 class V
5 c1o 7553 . . . 4 class 1𝑜
64, 5cdif 3571 . . 3 class (V ∖ 1𝑜)
73, 6cima 5117 . 2 class ( RingIso “ (V ∖ 1𝑜))
81, 7wceq 1483 1 wff 𝑟 = ( RingIso “ (V ∖ 1𝑜))
Colors of variables: wff setvar class
This definition is referenced by:  brric  18744
  Copyright terms: Public domain W3C validator