![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brric | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
brric | ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ric 18718 | . 2 ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1𝑜)) | |
2 | ovex 6678 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
3 | rabexg 4812 | . . . . 5 ⊢ ((𝑟 RingHom 𝑠) ∈ V → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) |
5 | 4 | rgen2a 2977 | . . 3 ⊢ ∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V |
6 | df-rngiso 18716 | . . . 4 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)}) | |
7 | 6 | fnmpt2 7238 | . . 3 ⊢ (∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ RingIso Fn (V × V) |
9 | 1, 8 | brwitnlem 7587 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 {crab 2916 Vcvv 3200 ∅c0 3915 class class class wbr 4653 × cxp 5112 ◡ccnv 5113 Fn wfn 5883 (class class class)co 6650 RingHom crh 18712 RingIso crs 18713 ≃𝑟 cric 18714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-rngiso 18716 df-ric 18718 |
This theorem is referenced by: brric2 18745 mat1ric 20293 scmatric 20343 matcpmric 20564 pmmpric 20628 |
Copyright terms: Public domain | W3C validator |