Detailed syntax breakdown of Definition df-sat
| Step | Hyp | Ref
| Expression |
| 1 | | csat 31318 |
. 2
class
Sat |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | ve |
. . 3
setvar 𝑒 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | | vf |
. . . . . 6
setvar 𝑓 |
| 6 | 5 | cv 1482 |
. . . . . . 7
class 𝑓 |
| 7 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 8 | 7 | cv 1482 |
. . . . . . . . . . . . 13
class 𝑥 |
| 9 | | vu |
. . . . . . . . . . . . . . . 16
setvar 𝑢 |
| 10 | 9 | cv 1482 |
. . . . . . . . . . . . . . 15
class 𝑢 |
| 11 | | c1st 7166 |
. . . . . . . . . . . . . . 15
class
1st |
| 12 | 10, 11 | cfv 5888 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑢) |
| 13 | | vv |
. . . . . . . . . . . . . . . 16
setvar 𝑣 |
| 14 | 13 | cv 1482 |
. . . . . . . . . . . . . . 15
class 𝑣 |
| 15 | 14, 11 | cfv 5888 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑣) |
| 16 | | cgna 31316 |
. . . . . . . . . . . . . 14
class
⊼𝑔 |
| 17 | 12, 15, 16 | co 6650 |
. . . . . . . . . . . . 13
class
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) |
| 18 | 8, 17 | wceq 1483 |
. . . . . . . . . . . 12
wff 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) |
| 19 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
| 20 | 19 | cv 1482 |
. . . . . . . . . . . . 13
class 𝑦 |
| 21 | 2 | cv 1482 |
. . . . . . . . . . . . . . 15
class 𝑚 |
| 22 | | com 7065 |
. . . . . . . . . . . . . . 15
class
ω |
| 23 | | cmap 7857 |
. . . . . . . . . . . . . . 15
class
↑𝑚 |
| 24 | 21, 22, 23 | co 6650 |
. . . . . . . . . . . . . 14
class (𝑚 ↑𝑚
ω) |
| 25 | | c2nd 7167 |
. . . . . . . . . . . . . . . 16
class
2nd |
| 26 | 10, 25 | cfv 5888 |
. . . . . . . . . . . . . . 15
class
(2nd ‘𝑢) |
| 27 | 14, 25 | cfv 5888 |
. . . . . . . . . . . . . . 15
class
(2nd ‘𝑣) |
| 28 | 26, 27 | cin 3573 |
. . . . . . . . . . . . . 14
class
((2nd ‘𝑢) ∩ (2nd ‘𝑣)) |
| 29 | 24, 28 | cdif 3571 |
. . . . . . . . . . . . 13
class ((𝑚 ↑𝑚
ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) |
| 30 | 20, 29 | wceq 1483 |
. . . . . . . . . . . 12
wff 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) |
| 31 | 18, 30 | wa 384 |
. . . . . . . . . . 11
wff (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) |
| 32 | 31, 13, 6 | wrex 2913 |
. . . . . . . . . 10
wff
∃𝑣 ∈
𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) |
| 33 | | vi |
. . . . . . . . . . . . . . 15
setvar 𝑖 |
| 34 | 33 | cv 1482 |
. . . . . . . . . . . . . 14
class 𝑖 |
| 35 | 12, 34 | cgol 31317 |
. . . . . . . . . . . . 13
class
∀𝑔𝑖(1st ‘𝑢) |
| 36 | 8, 35 | wceq 1483 |
. . . . . . . . . . . 12
wff 𝑥 =
∀𝑔𝑖(1st ‘𝑢) |
| 37 | | vz |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑧 |
| 38 | 37 | cv 1482 |
. . . . . . . . . . . . . . . . . . 19
class 𝑧 |
| 39 | 34, 38 | cop 4183 |
. . . . . . . . . . . . . . . . . 18
class
〈𝑖, 𝑧〉 |
| 40 | 39 | csn 4177 |
. . . . . . . . . . . . . . . . 17
class
{〈𝑖, 𝑧〉} |
| 41 | | va |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑎 |
| 42 | 41 | cv 1482 |
. . . . . . . . . . . . . . . . . 18
class 𝑎 |
| 43 | 34 | csn 4177 |
. . . . . . . . . . . . . . . . . . 19
class {𝑖} |
| 44 | 22, 43 | cdif 3571 |
. . . . . . . . . . . . . . . . . 18
class (ω
∖ {𝑖}) |
| 45 | 42, 44 | cres 5116 |
. . . . . . . . . . . . . . . . 17
class (𝑎 ↾ (ω ∖ {𝑖})) |
| 46 | 40, 45 | cun 3572 |
. . . . . . . . . . . . . . . 16
class
({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) |
| 47 | 46, 26 | wcel 1990 |
. . . . . . . . . . . . . . 15
wff
({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd
‘𝑢) |
| 48 | 47, 37, 21 | wral 2912 |
. . . . . . . . . . . . . 14
wff
∀𝑧 ∈
𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢) |
| 49 | 48, 41, 24 | crab 2916 |
. . . . . . . . . . . . 13
class {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} |
| 50 | 20, 49 | wceq 1483 |
. . . . . . . . . . . 12
wff 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} |
| 51 | 36, 50 | wa 384 |
. . . . . . . . . . 11
wff (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) |
| 52 | 51, 33, 22 | wrex 2913 |
. . . . . . . . . 10
wff
∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) |
| 53 | 32, 52 | wo 383 |
. . . . . . . . 9
wff
(∃𝑣 ∈
𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 54 | 53, 9, 6 | wrex 2913 |
. . . . . . . 8
wff
∃𝑢 ∈
𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) |
| 55 | 54, 7, 19 | copab 4712 |
. . . . . . 7
class
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} |
| 56 | 6, 55 | cun 3572 |
. . . . . 6
class (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) |
| 57 | 5, 4, 56 | cmpt 4729 |
. . . . 5
class (𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 58 | | vj |
. . . . . . . . . . . 12
setvar 𝑗 |
| 59 | 58 | cv 1482 |
. . . . . . . . . . 11
class 𝑗 |
| 60 | | cgoe 31315 |
. . . . . . . . . . 11
class
∈𝑔 |
| 61 | 34, 59, 60 | co 6650 |
. . . . . . . . . 10
class (𝑖∈𝑔𝑗) |
| 62 | 8, 61 | wceq 1483 |
. . . . . . . . 9
wff 𝑥 = (𝑖∈𝑔𝑗) |
| 63 | 34, 42 | cfv 5888 |
. . . . . . . . . . . 12
class (𝑎‘𝑖) |
| 64 | 59, 42 | cfv 5888 |
. . . . . . . . . . . 12
class (𝑎‘𝑗) |
| 65 | 3 | cv 1482 |
. . . . . . . . . . . 12
class 𝑒 |
| 66 | 63, 64, 65 | wbr 4653 |
. . . . . . . . . . 11
wff (𝑎‘𝑖)𝑒(𝑎‘𝑗) |
| 67 | 66, 41, 24 | crab 2916 |
. . . . . . . . . 10
class {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)} |
| 68 | 20, 67 | wceq 1483 |
. . . . . . . . 9
wff 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)} |
| 69 | 62, 68 | wa 384 |
. . . . . . . 8
wff (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)}) |
| 70 | 69, 58, 22 | wrex 2913 |
. . . . . . 7
wff
∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)}) |
| 71 | 70, 33, 22 | wrex 2913 |
. . . . . 6
wff
∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)}) |
| 72 | 71, 7, 19 | copab 4712 |
. . . . 5
class
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)})} |
| 73 | 57, 72 | crdg 7505 |
. . . 4
class
rec((𝑓 ∈ V
↦ (𝑓 ∪
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) |
| 74 | 22 | csuc 5725 |
. . . 4
class suc
ω |
| 75 | 73, 74 | cres 5116 |
. . 3
class
(rec((𝑓 ∈ V
↦ (𝑓 ∪
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω) |
| 76 | 2, 3, 4, 4, 75 | cmpt2 6652 |
. 2
class (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) |
| 77 | 1, 76 | wceq 1483 |
1
wff Sat =
(𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣
(𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) |