![]() |
Metamath
Proof Explorer Theorem List (p. 314 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cvmlift3lem1 31301* | Lemma for cvmlift3 31310. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑀‘0) = 𝑂) & ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑁‘0) = 𝑂) & ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) ⇒ ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) | ||
Theorem | cvmlift3lem2 31302* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) | ||
Theorem | cvmlift3lem3 31303* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) | ||
Theorem | cvmlift3lem4 31304* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) | ||
Theorem | cvmlift3lem5 31305* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐻) = 𝐺) | ||
Theorem | cvmlift3lem6 31306* | Lemma for cvmlift3 31310. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → 𝑋 ∈ 𝑀) & ⊢ (𝜑 → 𝑍 ∈ 𝑀) & ⊢ (𝜑 → 𝑄 ∈ (II Cn 𝐾)) & ⊢ 𝑅 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑄) ∧ (𝑔‘0) = 𝑃)) & ⊢ (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻‘𝑋))) & ⊢ (𝜑 → 𝑁 ∈ (II Cn (𝐾 ↾t 𝑀))) & ⊢ (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍)) & ⊢ 𝐼 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = (𝐻‘𝑋))) ⇒ ⊢ (𝜑 → (𝐻‘𝑍) ∈ 𝑊) | ||
Theorem | cvmlift3lem7 31307* | Lemma for cvmlift3 31310. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ PConn) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) & ⊢ (𝜑 → 𝑉 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋)) | ||
Theorem | cvmlift3lem8 31308* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐾 Cn 𝐶)) | ||
Theorem | cvmlift3lem9 31309* | Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | cvmlift3 31310* | A general version of cvmlift 31281. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | snmlff 31311* | The function 𝐹 from snmlval 31313 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ 𝐹:ℕ⟶(0[,]1) | ||
Theorem | snmlfval 31312* | The function 𝐹 from snmlval 31313 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = ((#‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) | ||
Theorem | snmlval 31313* | The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) ⇒ ⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) | ||
Theorem | snmlflim 31314* | If 𝐴 is simply normal, then the function 𝐹 of relative density of 𝐵 in the digit string converges to 1 / 𝑅, i.e. the set of occurrences of 𝐵 in the digit string has natural density 1 / 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ ((𝐴 ∈ (𝑆‘𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅)) | ||
Syntax | cgoe 31315 | The Godel-set of membership. |
class ∈𝑔 | ||
Syntax | cgna 31316 | The Godel-set for the Sheffer stroke. |
class ⊼𝑔 | ||
Syntax | cgol 31317 | The Godel-set of universal quantification. (Note that this is not a wff.) |
class ∀𝑔𝑁𝑈 | ||
Syntax | csat 31318 | The satisfaction function. |
class Sat | ||
Syntax | cfmla 31319 | The formula set predicate. |
class Fmla | ||
Syntax | csate 31320 | The ∈-satisfaction function. |
class Sat∈ | ||
Syntax | cprv 31321 | The "proves" relation. |
class ⊧ | ||
Definition | df-goel 31322 | Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1𝑜) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | ||
Definition | df-gona 31323 | Define the Godel-set for the Sheffer stroke NAND. Here the arguments 𝑥 = 〈𝑈, 𝑉〉 are also Godel-sets corresponding to smaller formulae. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1𝑜, 𝑥〉) | ||
Definition | df-goal 31324 | Define the Godel-set of universal quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∀𝑥𝜑] = ∀𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∀𝑔𝑁𝑈 = 〈2𝑜, 〈𝑁, 𝑈〉〉 | ||
Definition | df-sat 31325* |
Define the satisfaction predicate. This recursive construction builds up
a function over wff codes and simultaneously defines the set of
assignments to all variables from 𝑀 that makes the coded wff true in
the model 𝑀, where ∈ is interpreted as the binary relation 𝐸 on 𝑀.
The interpretation of the statement 𝑆 ∈ (((𝑀 Sat 𝐸)‘𝑛)‘𝑈) is that for the model 〈𝑀, 𝐸〉, 𝑆:ω⟶𝑀 is a
valuation of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1𝑜), etc.) and 𝑈 is a code for a wff using ∈ , ⊼ , ∀ that
is true under the assignment 𝑆. The function is defined by finite
recursion; ((𝑀 Sat 𝐸)‘𝑛) only operates on wffs of depth at
most 𝑛 ∈ ω, and ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω((𝑀 Sat 𝐸)‘𝑛) operates on all wffs.
The coding scheme for the wffs is defined so that
(Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑚 ↑𝑚 ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣ ∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑𝑚 ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) | ||
Definition | df-sate 31326* | A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable 𝑛. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | ||
Definition | df-fmla 31327 | Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥 = 𝑦 or 𝑥 ∈ 𝑦 (which in our coding scheme is the set ({∅, 1𝑜} × (ω × ω)); see df-sat 31325 for the full coding scheme), and each extra level adds to the complexity of the formulas in (Fmla‘𝑛). (Fmla‘ω) = ∪ 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | ||
Syntax | cgon 31328 | The Godel-set of negation. (Note that this is not a wff.) |
class ¬𝑔𝑈 | ||
Syntax | cgoa 31329 | The Godel-set of conjunction. |
class ∧𝑔 | ||
Syntax | cgoi 31330 | The Godel-set of implication. |
class →𝑔 | ||
Syntax | cgoo 31331 | The Godel-set of disjunction. |
class ∨𝑔 | ||
Syntax | cgob 31332 | The Godel-set of equivalence. |
class ↔𝑔 | ||
Syntax | cgoq 31333 | The Godel-set of equality. |
class =𝑔 | ||
Syntax | cgox 31334 | The Godel-set of existential quantification. (Note that this is not a wff.) |
class ∃𝑔𝑁𝑈 | ||
Definition | df-gonot 31335 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulae. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
Definition | df-goan 31336* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulae. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
Definition | df-goim 31337* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulae. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
Definition | df-goor 31338* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulae. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
Definition | df-gobi 31339* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulae. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
Definition | df-goeq 31340* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1𝑜) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2602 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
Definition | df-goex 31341 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
Definition | df-prv 31342* | Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀 ↑𝑚 ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑𝑚 ω)} | ||
Syntax | cgze 31343 | The Axiom of Extensionality. |
class AxExt | ||
Syntax | cgzr 31344 | The Axiom Scheme of Replacement. |
class AxRep | ||
Syntax | cgzp 31345 | The Axiom of Power Sets. |
class AxPow | ||
Syntax | cgzu 31346 | The Axiom of Unions. |
class AxUn | ||
Syntax | cgzg 31347 | The Axiom of Regularity. |
class AxReg | ||
Syntax | cgzi 31348 | The Axiom of Infinity. |
class AxInf | ||
Syntax | cgzf 31349 | The set of models of ZF. |
class ZF | ||
Definition | df-gzext 31350 | The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxExt = (∀𝑔2𝑜((2𝑜∈𝑔∅) ↔𝑔 (2𝑜∈𝑔1𝑜)) →𝑔 (∅=𝑔1𝑜)) | ||
Definition | df-gzrep 31351 | The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3𝑜∃𝑔1𝑜∀𝑔2𝑜(∀𝑔1𝑜𝑢 →𝑔 (2𝑜=𝑔1𝑜)) →𝑔 ∀𝑔1𝑜∀𝑔2𝑜((2𝑜∈𝑔1𝑜) ↔𝑔 ∃𝑔3𝑜((3𝑜∈𝑔∅)∧𝑔∀𝑔1𝑜𝑢)))) | ||
Definition | df-gzpow 31352 | The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxPow = ∃𝑔1𝑜∀𝑔2𝑜(∀𝑔1𝑜((1𝑜∈𝑔2𝑜) ↔𝑔 (1𝑜∈𝑔∅)) →𝑔 (2𝑜∈𝑔1𝑜)) | ||
Definition | df-gzun 31353 | The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxUn = ∃𝑔1𝑜∀𝑔2𝑜(∃𝑔1𝑜((2𝑜∈𝑔1𝑜)∧𝑔(1𝑜∈𝑔∅)) →𝑔 (2𝑜∈𝑔1𝑜)) | ||
Definition | df-gzreg 31354 | The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxReg = (∃𝑔1𝑜(1𝑜∈𝑔∅) →𝑔 ∃𝑔1𝑜((1𝑜∈𝑔∅)∧𝑔∀𝑔2𝑜((2𝑜∈𝑔1𝑜) →𝑔 ¬𝑔(2𝑜∈𝑔∅)))) | ||
Definition | df-gzinf 31355 | The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ AxInf = ∃𝑔1𝑜((∅∈𝑔1𝑜)∧𝑔∀𝑔2𝑜((2𝑜∈𝑔1𝑜) →𝑔 ∃𝑔∅((2𝑜∈𝑔∅)∧𝑔(∅∈𝑔1𝑜)))) | ||
Definition | df-gzf 31356* | Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))} | ||
This is a formalization of Appendix C of the Metamath book, which describes the mathematical representation of a formal system, of which set.mm (this file) is one. | ||
Syntax | cmcn 31357 | The set of constants. |
class mCN | ||
Syntax | cmvar 31358 | The set of variables. |
class mVR | ||
Syntax | cmty 31359 | The type function. |
class mType | ||
Syntax | cmvt 31360 | The set of variable typecodes. |
class mVT | ||
Syntax | cmtc 31361 | The set of typecodes. |
class mTC | ||
Syntax | cmax 31362 | The set of axioms. |
class mAx | ||
Syntax | cmrex 31363 | The set of raw expressions. |
class mREx | ||
Syntax | cmex 31364 | The set of expressions. |
class mEx | ||
Syntax | cmdv 31365 | The set of distinct variables. |
class mDV | ||
Syntax | cmvrs 31366 | The variables in an expression. |
class mVars | ||
Syntax | cmrsub 31367 | The set of raw substitutions. |
class mRSubst | ||
Syntax | cmsub 31368 | The set of substitutions. |
class mSubst | ||
Syntax | cmvh 31369 | The set of variable hypotheses. |
class mVH | ||
Syntax | cmpst 31370 | The set of pre-statements. |
class mPreSt | ||
Syntax | cmsr 31371 | The reduct of a pre-statement. |
class mStRed | ||
Syntax | cmsta 31372 | The set of statements. |
class mStat | ||
Syntax | cmfs 31373 | The set of formal systems. |
class mFS | ||
Syntax | cmcls 31374 | The closure of a set of statements. |
class mCls | ||
Syntax | cmpps 31375 | The set of provable pre-statements. |
class mPPSt | ||
Syntax | cmthm 31376 | The set of theorems. |
class mThm | ||
Definition | df-mcn 31377 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCN = Slot 1 | ||
Definition | df-mvar 31378 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVR = Slot 2 | ||
Definition | df-mty 31379 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mType = Slot 3 | ||
Definition | df-mtc 31380 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mTC = Slot 4 | ||
Definition | df-mmax 31381 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mAx = Slot 5 | ||
Definition | df-mvt 31382 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
Definition | df-mrex 31383 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
Definition | df-mex 31384 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
Definition | df-mdv 31385 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
Definition | df-mvrs 31386* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
Definition | df-mrsub 31387* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
Definition | df-msub 31388* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
Definition | df-mvh 31389* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
Definition | df-mpst 31390* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
Definition | df-msr 31391* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
Definition | df-msta 31392 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
Definition | df-mfs 31393* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
Definition | df-mcls 31394* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
Definition | df-mpps 31395* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
Definition | df-mthm 31396 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
Theorem | mvtval 31397 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
Theorem | mrexval 31398 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
Theorem | mexval 31399 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
Theorem | mexval2 31400 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |