Detailed syntax breakdown of Definition df-sate
| Step | Hyp | Ref
| Expression |
| 1 | | csate 31320 |
. 2
class
Sat∈ |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | vu |
. . 3
setvar 𝑢 |
| 4 | | cvv 3200 |
. . 3
class
V |
| 5 | 3 | cv 1482 |
. . . 4
class 𝑢 |
| 6 | | com 7065 |
. . . . 5
class
ω |
| 7 | 2 | cv 1482 |
. . . . . 6
class 𝑚 |
| 8 | | cep 5028 |
. . . . . . 7
class
E |
| 9 | 7, 7 | cxp 5112 |
. . . . . . 7
class (𝑚 × 𝑚) |
| 10 | 8, 9 | cin 3573 |
. . . . . 6
class ( E ∩
(𝑚 × 𝑚)) |
| 11 | | csat 31318 |
. . . . . 6
class
Sat |
| 12 | 7, 10, 11 | co 6650 |
. . . . 5
class (𝑚 Sat ( E ∩ (𝑚 × 𝑚))) |
| 13 | 6, 12 | cfv 5888 |
. . . 4
class ((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω) |
| 14 | 5, 13 | cfv 5888 |
. . 3
class (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢) |
| 15 | 2, 3, 4, 4, 14 | cmpt2 6652 |
. 2
class (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) |
| 16 | 1, 15 | wceq 1483 |
1
wff
Sat∈ = (𝑚
∈ V, 𝑢 ∈ V
↦ (((𝑚 Sat ( E ∩
(𝑚 × 𝑚)))‘ω)‘𝑢)) |