| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-se | Structured version Visualization version GIF version | ||
| Description: Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-se | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wse 5071 | . 2 wff 𝑅 Se 𝐴 |
| 4 | vy | . . . . . . 7 setvar 𝑦 | |
| 5 | 4 | cv 1482 | . . . . . 6 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1482 | . . . . . 6 class 𝑥 |
| 8 | 5, 7, 2 | wbr 4653 | . . . . 5 wff 𝑦𝑅𝑥 |
| 9 | 8, 4, 1 | crab 2916 | . . . 4 class {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} |
| 10 | cvv 3200 | . . . 4 class V | |
| 11 | 9, 10 | wcel 1990 | . . 3 wff {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V |
| 12 | 11, 6, 1 | wral 2912 | . 2 wff ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V |
| 13 | 3, 12 | wb 196 | 1 wff (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
| Colors of variables: wff setvar class |
| This definition is referenced by: seex 5077 exse 5078 sess1 5082 sess2 5083 nfse 5089 epse 5097 seinxp 5185 dfse2 5499 exse2 7105 bj-seex 32919 |
| Copyright terms: Public domain | W3C validator |