MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5097
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5032 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 214 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2738 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3203 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2698 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 3690 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 4803 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 2924 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5074 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 221 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  {cab 2608  wral 2912  {crab 2916  Vcvv 3200   class class class wbr 4653   E cep 5028   Se wse 5071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-se 5074
This theorem is referenced by:  omsinds  7084  tfr1ALT  7496  tfr2ALT  7497  tfr3ALT  7498  oieu  8444  oismo  8445  oiid  8446  cantnfp1lem3  8577  r0weon  8835  hsmexlem1  9248
  Copyright terms: Public domain W3C validator