MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse2 Structured version   Visualization version   GIF version

Theorem exse2 7105
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2 (𝑅𝑉𝑅 Se 𝐴)

Proof of Theorem exse2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)}
2 vex 3203 . . . . . . . 8 𝑦 ∈ V
3 vex 3203 . . . . . . . 8 𝑥 ∈ V
42, 3breldm 5329 . . . . . . 7 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
54adantl 482 . . . . . 6 ((𝑦𝐴𝑦𝑅𝑥) → 𝑦 ∈ dom 𝑅)
65abssi 3677 . . . . 5 {𝑦 ∣ (𝑦𝐴𝑦𝑅𝑥)} ⊆ dom 𝑅
71, 6eqsstri 3635 . . . 4 {𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅
8 dmexg 7097 . . . 4 (𝑅𝑉 → dom 𝑅 ∈ V)
9 ssexg 4804 . . . 4 (({𝑦𝐴𝑦𝑅𝑥} ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 9sylancr 695 . . 3 (𝑅𝑉 → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1110ralrimivw 2967 . 2 (𝑅𝑉 → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
12 df-se 5074 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
1311, 12sylibr 224 1 (𝑅𝑉𝑅 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  {cab 2608  wral 2912  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653   Se wse 5071  dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-se 5074  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  dfac8clem  8855
  Copyright terms: Public domain W3C validator