| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tail | Structured version Visualization version GIF version | ||
| Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.) |
| Ref | Expression |
|---|---|
| df-tail | ⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctail 17229 | . 2 class tail | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cdir 17228 | . . 3 class DirRel | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | 2 | cv 1482 | . . . . . 6 class 𝑟 |
| 6 | 5 | cuni 4436 | . . . . 5 class ∪ 𝑟 |
| 7 | 6 | cuni 4436 | . . . 4 class ∪ ∪ 𝑟 |
| 8 | 4 | cv 1482 | . . . . . 6 class 𝑥 |
| 9 | 8 | csn 4177 | . . . . 5 class {𝑥} |
| 10 | 5, 9 | cima 5117 | . . . 4 class (𝑟 “ {𝑥}) |
| 11 | 4, 7, 10 | cmpt 4729 | . . 3 class (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥})) |
| 12 | 2, 3, 11 | cmpt 4729 | . 2 class (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
| 13 | 1, 12 | wceq 1483 | 1 wff tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tailfval 32367 |
| Copyright terms: Public domain | W3C validator |