![]() |
Metamath
Proof Explorer Theorem List (p. 173 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-tsr 17201 | Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | ||
Theorem | isps 17202 | The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.) |
⊢ (𝑅 ∈ 𝐴 → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | ||
Theorem | psrel 17203 | A poset is a relation. (Contributed by NM, 12-May-2008.) |
⊢ (𝐴 ∈ PosetRel → Rel 𝐴) | ||
Theorem | psref2 17204 | A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.) |
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | ||
Theorem | pstr2 17205 | A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | ||
Theorem | pslem 17206 | Lemma for psref 17208 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 ∈ ∪ ∪ 𝑅 → 𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵))) | ||
Theorem | psdmrn 17207 | The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) | ||
Theorem | psref 17208 | A poset is reflexive. (Contributed by NM, 13-May-2008.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
Theorem | psrn 17209 | The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅) | ||
Theorem | psasym 17210 | A poset is antisymmetric. (Contributed by NM, 12-May-2008.) |
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴 = 𝐵) | ||
Theorem | pstr 17211 | A poset is transitive. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | cnvps 17212 | The converse of a poset is a poset. In the general case (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 17213 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | ||
Theorem | cnvpsb 17213 | The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009.) |
⊢ (Rel 𝑅 → (𝑅 ∈ PosetRel ↔ ◡𝑅 ∈ PosetRel)) | ||
Theorem | psss 17214 | Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.) |
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel) | ||
Theorem | psssdm2 17215 | Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ PosetRel → dom (𝑅 ∩ (𝐴 × 𝐴)) = (𝑋 ∩ 𝐴)) | ||
Theorem | psssdm 17216 | Field of a subposet. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) | ||
Theorem | istsr 17217 | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) | ||
Theorem | istsr2 17218* | The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | tsrlin 17219 | A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ∨ 𝐵𝑅𝐴)) | ||
Theorem | tsrlemax 17220 | Two ways of saying a number is less than or equal to the maximum of two others. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐶, 𝐵) ↔ (𝐴𝑅𝐵 ∨ 𝐴𝑅𝐶))) | ||
Theorem | tsrps 17221 | A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | ||
Theorem | cnvtsr 17222 | The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) | ||
Theorem | tsrss 17223 | Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.) |
⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ TosetRel ) | ||
Theorem | ledm 17224 | domain of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
⊢ ℝ* = dom ≤ | ||
Theorem | lern 17225 | The range of ≤ is ℝ*. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ℝ* = ran ≤ | ||
Theorem | lefld 17226 | The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 4-May-2015.) |
⊢ ℝ* = ∪ ∪ ≤ | ||
Theorem | letsr 17227 | The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ≤ ∈ TosetRel | ||
Syntax | cdir 17228 | Extend class notation with the class of all directed sets. |
class DirRel | ||
Syntax | ctail 17229 | Extend class notation with the tail function. |
class tail | ||
Definition | df-dir 17230 | Define the class of all directed sets/directions. (Contributed by Jeff Hankins, 25-Nov-2009.) |
⊢ DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟 × ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} | ||
Definition | df-tail 17231* | Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.) |
⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟 ↦ (𝑟 “ {𝑥}))) | ||
Theorem | isdir 17232 | A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ 𝐴 = ∪ ∪ 𝑅 ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝐴) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝐴 × 𝐴) ⊆ (◡𝑅 ∘ 𝑅))))) | ||
Theorem | reldir 17233 | A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ (𝑅 ∈ DirRel → Rel 𝑅) | ||
Theorem | dirdm 17234 | A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | ||
Theorem | dirref 17235 | A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) | ||
Theorem | dirtr 17236 | A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ (((𝑅 ∈ DirRel ∧ 𝐶 ∈ 𝑉) ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴𝑅𝐶) | ||
Theorem | dirge 17237* | For any two elements of a directed set, there exists a third element greater than or equal to both. (Note that this does not say that the two elements have a least upper bound.) (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥)) | ||
Theorem | tsrdir 17238 | A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
⊢ (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel) | ||
According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.". Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following: With df-mpt2 6655, binary operations are defined by a rule, and with df-ov 6653, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆⟶𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 are more precisely called internal binary operations. If, in addition, the result is also contained in the set 𝑆, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set 𝑆" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations ). The definition of magmas (Mgm, see df-mgm 17242) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible. | ||
Syntax | cplusf 17239 | Extend class notation with group addition as a function. |
class +𝑓 | ||
Syntax | cmgm 17240 | Extend class notation with class of all magmas. |
class Mgm | ||
Definition | df-plusf 17241* | Define group addition function. Usually we will use +g directly instead of +𝑓, and they have the same behavior in most cases. The main advantage of +𝑓 for any magma is that it is a guaranteed function (mgmplusf 17251), while +g only has closure (mgmcl 17245). (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | ||
Definition | df-mgm 17242* | A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | ||
Theorem | ismgm 17243* | The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) | ||
Theorem | ismgmn0 17244* | The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) | ||
Theorem | mgmcl 17245 | Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) | ||
Theorem | isnmgm 17246 | A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) | ||
Theorem | plusffval 17247* | The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) | ||
Theorem | plusfval 17248 | The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) | ||
Theorem | plusfeq 17249 | If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) | ||
Theorem | plusffn 17250 | The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⨣ = (+𝑓‘𝐺) ⇒ ⊢ ⨣ Fn (𝐵 × 𝐵) | ||
Theorem | mgmplusf 17251 | The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) | ||
Theorem | issstrmgm 17252* | Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) | ||
Theorem | intopsn 17253 | The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 19275. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
⊢ (( ⚬ :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ⚬ = {〈〈𝑍, 𝑍〉, 𝑍〉})) | ||
Theorem | mgmb1mgm1 17254 | The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | ||
Theorem | mgm0 17255 | Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.) |
⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) | ||
Theorem | mgm0b 17256 | The structure with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.) |
⊢ {〈(Base‘ndx), ∅〉, 〈(+g‘ndx), 𝑂〉} ∈ Mgm | ||
Theorem | mgm1 17257 | The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
Theorem | opifismgm 17258* | A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 17259) is an important property of monoids (see mndid 17303), and therefore also for groups (see grpid 17457), but also for magmas not required to be associative. Non-associative magmas having an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15). In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g‘𝑀), see df-0g 16102. Related theorems which are already valid for magmas are provided in the following. | ||
Theorem | mgmidmo 17259* | A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.) |
⊢ ∃*𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) | ||
Theorem | grpidval 17260* | The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ 0 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) | ||
Theorem | grpidpropd 17261* | If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) | ||
Theorem | fn0g 17262 | The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 0g Fn V | ||
Theorem | 0g0 17263 | The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
⊢ ∅ = (0g‘∅) | ||
Theorem | ismgmid 17264* | The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) | ||
Theorem | mgmidcl 17265* | The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ (𝜑 → 0 ∈ 𝐵) | ||
Theorem | mgmlrid 17266* | The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) | ||
Theorem | ismgmid2 17267* | Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) ⇒ ⊢ (𝜑 → 𝑈 = 0 ) | ||
Theorem | grpidd 17268* | Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) ⇒ ⊢ (𝜑 → 0 = (0g‘𝐺)) | ||
Theorem | mgmidsssn0 17269* | Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) | ||
Usually, the symbol Σg is used in the context of (abelian) groups. Therefore it is called "group sum". It can be used, however, also for magmas, that's why the related theorems are provided in the following. If the magma is either not commutative or not associative or has no identity, special care has to be taken. E.g. the order of the single additions could be important, see remark 2. in the comment for df-gsum 16103. | ||
Theorem | gsumvalx 17270* | Expand out the substitutions in df-gsum 16103. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} & ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))))) | ||
Theorem | gsumval 17271* | Expand out the substitutions in df-gsum 16103. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} & ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(#‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘𝑊))))))) | ||
Theorem | gsumpropd 17272 | The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsumpropd2lem 17273* | Lemma for gsumpropd2 17274. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) & ⊢ 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) & ⊢ 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsumpropd2 17274* | A stronger version of gsumpropd 17272, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 17275. (Contributed by Thierry Arnoux, 28-Jun-2017.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsummgmpropd 17275* | A stronger version of gsumpropd 17272 if at least one of the involved structures is a magma, see gsumpropd2 17274. (Contributed by AV, 31-Jan-2020.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ Mgm) & ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsumress 17276* | The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 0 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
Theorem | gsumval1 17277* | Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) | ||
Theorem | gsum0 17278 | Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 Σg ∅) = 0 | ||
Theorem | gsumval2a 17279* | Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} & ⊢ (𝜑 → ¬ ran 𝐹 ⊆ 𝑂) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | gsumval2 17280 | Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | gsumprval 17281 | Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) & ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) | ||
Theorem | gsumpr12val 17282 | Value of the group sum operation over the pair {1, 2}. (Contributed by AV, 14-Dec-2018.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{1, 2}⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘1) + (𝐹‘2))) | ||
The definition of semigroups (SGrp, see df-sgrp 17284) is according to Wikipedia ("Semigroup", 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup) "In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. ... Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses.". | ||
Syntax | csgrp 17283 | Extend class notation with class of all semigroups. |
class SGrp | ||
Definition | df-sgrp 17284* | A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 17242), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
⊢ SGrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | ||
Theorem | issgrp 17285* | The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by by AV, 6-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | ||
Theorem | issgrpv 17286* | The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ SGrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
Theorem | issgrpn0 17287* | The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ SGrp ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))))) | ||
Theorem | isnsgrp 17288 | A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (((𝑋 ⚬ 𝑌) ⚬ 𝑍) ≠ (𝑋 ⚬ (𝑌 ⚬ 𝑍)) → 𝑀 ∉ SGrp)) | ||
Theorem | sgrpmgm 17289 | A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
⊢ (𝑀 ∈ SGrp → 𝑀 ∈ Mgm) | ||
Theorem | sgrpass 17290 | A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ ⚬ = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ SGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ⚬ 𝑌) ⚬ 𝑍) = (𝑋 ⚬ (𝑌 ⚬ 𝑍))) | ||
Theorem | sgrp0 17291 | Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ SGrp) | ||
Theorem | sgrp0b 17292 | The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
⊢ {〈(Base‘ndx), ∅〉, 〈(+g‘ndx), 𝑂〉} ∈ SGrp | ||
Theorem | sgrp1 17293 | The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) |
⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ SGrp) | ||
According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 17295, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 17297. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element". | ||
Syntax | cmnd 17294 | Extend class notation with class of all monoids. |
class Mnd | ||
Definition | df-mnd 17295* | A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 17301), whose operation is associative (see mndass 17302) and has a two-sided neutral element (see mndid 17303), see also ismnd 17297. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
⊢ Mnd = {𝑔 ∈ SGrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | ||
Theorem | ismnddef 17296* | The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ SGrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) | ||
Theorem | ismnd 17297* | The predicate "is a monoid". This is the definig theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 17301), whose operation is associative (so, a semigroup, see also mndass 17302) and has a two-sided neutral element (see mndid 17303). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) | ||
Theorem | isnmnd 17298* | A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) | ||
Theorem | mndsgrp 17299 | A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ SGrp) | ||
Theorem | mndmgm 17300 | A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |