Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Visualization version   GIF version

Theorem tailfval 32367
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfval (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑋

Proof of Theorem tailfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 uniexg 6955 . . . 4 (𝐷 ∈ DirRel → 𝐷 ∈ V)
2 uniexg 6955 . . . 4 ( 𝐷 ∈ V → 𝐷 ∈ V)
3 mptexg 6484 . . . 4 ( 𝐷 ∈ V → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
41, 2, 33syl 18 . . 3 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
5 unieq 4444 . . . . . 6 (𝑑 = 𝐷 𝑑 = 𝐷)
65unieqd 4446 . . . . 5 (𝑑 = 𝐷 𝑑 = 𝐷)
7 imaeq1 5461 . . . . 5 (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥}))
86, 7mpteq12dv 4733 . . . 4 (𝑑 = 𝐷 → (𝑥 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
9 df-tail 17231 . . . 4 tail = (𝑑 ∈ DirRel ↦ (𝑥 𝑑 ↦ (𝑑 “ {𝑥})))
108, 9fvmptg 6280 . . 3 ((𝐷 ∈ DirRel ∧ (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
114, 10mpdan 702 . 2 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
12 tailfval.1 . . . 4 𝑋 = dom 𝐷
13 dirdm 17234 . . . 4 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
1412, 13syl5req 2669 . . 3 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
1514mpteq1d 4738 . 2 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
1611, 15eqtrd 2656 1 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   cuni 4436  cmpt 4729  dom cdm 5114  cima 5117  cfv 5888  DirRelcdir 17228  tailctail 17229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dir 17230  df-tail 17231
This theorem is referenced by:  tailval  32368  tailf  32370
  Copyright terms: Public domain W3C validator