MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xrs Structured version   Visualization version   GIF version

Definition df-xrs 16162
Description: The extended real number structure. Unlike df-cnfld 19747, the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld 19747. The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +∞ is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +∞ an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with fld when restricted to . (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
df-xrs *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-xrs
StepHypRef Expression
1 cxrs 16160 . 2 class *𝑠
2 cnx 15854 . . . . . 6 class ndx
3 cbs 15857 . . . . . 6 class Base
42, 3cfv 5888 . . . . 5 class (Base‘ndx)
5 cxr 10073 . . . . 5 class *
64, 5cop 4183 . . . 4 class ⟨(Base‘ndx), ℝ*
7 cplusg 15941 . . . . . 6 class +g
82, 7cfv 5888 . . . . 5 class (+g‘ndx)
9 cxad 11944 . . . . 5 class +𝑒
108, 9cop 4183 . . . 4 class ⟨(+g‘ndx), +𝑒
11 cmulr 15942 . . . . . 6 class .r
122, 11cfv 5888 . . . . 5 class (.r‘ndx)
13 cxmu 11945 . . . . 5 class ·e
1412, 13cop 4183 . . . 4 class ⟨(.r‘ndx), ·e
156, 10, 14ctp 4181 . . 3 class {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩}
16 cts 15947 . . . . . 6 class TopSet
172, 16cfv 5888 . . . . 5 class (TopSet‘ndx)
18 cle 10075 . . . . . 6 class
19 cordt 16159 . . . . . 6 class ordTop
2018, 19cfv 5888 . . . . 5 class (ordTop‘ ≤ )
2117, 20cop 4183 . . . 4 class ⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩
22 cple 15948 . . . . . 6 class le
232, 22cfv 5888 . . . . 5 class (le‘ndx)
2423, 18cop 4183 . . . 4 class ⟨(le‘ndx), ≤ ⟩
25 cds 15950 . . . . . 6 class dist
262, 25cfv 5888 . . . . 5 class (dist‘ndx)
27 vx . . . . . 6 setvar 𝑥
28 vy . . . . . 6 setvar 𝑦
2927cv 1482 . . . . . . . 8 class 𝑥
3028cv 1482 . . . . . . . 8 class 𝑦
3129, 30, 18wbr 4653 . . . . . . 7 wff 𝑥𝑦
3229cxne 11943 . . . . . . . 8 class -𝑒𝑥
3330, 32, 9co 6650 . . . . . . 7 class (𝑦 +𝑒 -𝑒𝑥)
3430cxne 11943 . . . . . . . 8 class -𝑒𝑦
3529, 34, 9co 6650 . . . . . . 7 class (𝑥 +𝑒 -𝑒𝑦)
3631, 33, 35cif 4086 . . . . . 6 class if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))
3727, 28, 5, 5, 36cmpt2 6652 . . . . 5 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
3826, 37cop 4183 . . . 4 class ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩
3921, 24, 38ctp 4181 . . 3 class {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}
4015, 39cun 3572 . 2 class ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
411, 40wceq 1483 1 wff *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  xrsstr  19760  xrsex  19761  xrsbas  19762  xrsadd  19763  xrsmul  19764  xrstset  19765  xrsle  19766  xrsds  19789
  Copyright terms: Public domain W3C validator