MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsex Structured version   Visualization version   GIF version

Theorem xrsex 19761
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsex *𝑠 ∈ V

Proof of Theorem xrsex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrs 16162 . 2 *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
2 tpex 6957 . . 3 {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∈ V
3 tpex 6957 . . 3 {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩} ∈ V
42, 3unex 6956 . 2 ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}) ∈ V
51, 4eqeltri 2697 1 *𝑠 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  Vcvv 3200  cun 3572  ifcif 4086  {ctp 4181  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cmpt2 6652  *cxr 10073  cle 10075  -𝑒cxne 11943   +𝑒 cxad 11944   ·e cxmu 11945  ndxcnx 15854  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  TopSetcts 15947  lecple 15948  distcds 15950  ordTopcordt 16159  *𝑠cxrs 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182  df-uni 4437  df-xrs 16162
This theorem is referenced by:  imasdsf1olem  22178  xrslt  29676  xrsmulgzz  29678  xrstos  29679  xrsp0  29681  xrsp1  29682  pnfinf  29737  xrnarchi  29738
  Copyright terms: Public domain W3C validator