![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version |
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsex | ⊢ ℝ*𝑠 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xrs 16162 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
2 | tpex 6957 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
3 | tpex 6957 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
4 | 2, 3 | unex 6956 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
5 | 1, 4 | eqeltri 2697 | 1 ⊢ ℝ*𝑠 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ifcif 4086 {ctp 4181 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝ*cxr 10073 ≤ cle 10075 -𝑒cxne 11943 +𝑒 cxad 11944 ·e cxmu 11945 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 TopSetcts 15947 lecple 15948 distcds 15950 ordTopcordt 16159 ℝ*𝑠cxrs 16160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 df-uni 4437 df-xrs 16162 |
This theorem is referenced by: imasdsf1olem 22178 xrslt 29676 xrsmulgzz 29678 xrstos 29679 xrsp0 29681 xrsp1 29682 pnfinf 29737 xrnarchi 29738 |
Copyright terms: Public domain | W3C validator |