![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-zring | Structured version Visualization version GIF version |
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
Ref | Expression |
---|---|
df-zring | ⊢ ℤring = (ℂfld ↾s ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zring 19818 | . 2 class ℤring | |
2 | ccnfld 19746 | . . 3 class ℂfld | |
3 | cz 11377 | . . 3 class ℤ | |
4 | cress 15858 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 6650 | . 2 class (ℂfld ↾s ℤ) |
6 | 1, 5 | wceq 1483 | 1 wff ℤring = (ℂfld ↾s ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: zringcrng 19820 zringbas 19824 zringplusg 19825 zringmulg 19826 zringmulr 19827 zring0 19828 zring1 19829 zringlpirlem1 19832 zringunit 19836 zringcyg 19839 zringmpg 19840 prmirred 19843 zndvds 19898 zringnrg 22591 zlmclm 22912 zclmncvs 22948 lgseisenlem4 25103 zringnm 30004 zringsubgval 42183 |
Copyright terms: Public domain | W3C validator |