MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zring Structured version   Visualization version   GIF version

Definition df-zring 19819
Description: The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
Assertion
Ref Expression
df-zring ring = (ℂflds ℤ)

Detailed syntax breakdown of Definition df-zring
StepHypRef Expression
1 zring 19818 . 2 class ring
2 ccnfld 19746 . . 3 class fld
3 cz 11377 . . 3 class
4 cress 15858 . . 3 class s
52, 3, 4co 6650 . 2 class (ℂflds ℤ)
61, 5wceq 1483 1 wff ring = (ℂflds ℤ)
Colors of variables: wff setvar class
This definition is referenced by:  zringcrng  19820  zringbas  19824  zringplusg  19825  zringmulg  19826  zringmulr  19827  zring0  19828  zring1  19829  zringlpirlem1  19832  zringunit  19836  zringcyg  19839  zringmpg  19840  prmirred  19843  zndvds  19898  zringnrg  22591  zlmclm  22912  zclmncvs  22948  lgseisenlem4  25103  zringnm  30004  zringsubgval  42183
  Copyright terms: Public domain W3C validator