MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringunit Structured version   Visualization version   GIF version

Theorem zringunit 19836
Description: The units of are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Assertion
Ref Expression
zringunit (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))

Proof of Theorem zringunit
StepHypRef Expression
1 zringbas 19824 . . . 4 ℤ = (Base‘ℤring)
2 eqid 2622 . . . 4 (Unit‘ℤring) = (Unit‘ℤring)
31, 2unitcl 18659 . . 3 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ ℤ)
4 zsubrg 19799 . . . . . . 7 ℤ ∈ (SubRing‘ℂfld)
5 zgz 15637 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ[i])
65ssriv 3607 . . . . . . 7 ℤ ⊆ ℤ[i]
7 gzsubrg 19800 . . . . . . . 8 ℤ[i] ∈ (SubRing‘ℂfld)
8 eqid 2622 . . . . . . . . 9 (ℂflds ℤ[i]) = (ℂflds ℤ[i])
98subsubrg 18806 . . . . . . . 8 (ℤ[i] ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i])))
107, 9ax-mp 5 . . . . . . 7 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]))
114, 6, 10mpbir2an 955 . . . . . 6 ℤ ∈ (SubRing‘(ℂflds ℤ[i]))
12 df-zring 19819 . . . . . . . 8 ring = (ℂflds ℤ)
13 ressabs 15939 . . . . . . . . 9 ((ℤ[i] ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℤ[i]) → ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ))
147, 6, 13mp2an 708 . . . . . . . 8 ((ℂflds ℤ[i]) ↾s ℤ) = (ℂflds ℤ)
1512, 14eqtr4i 2647 . . . . . . 7 ring = ((ℂflds ℤ[i]) ↾s ℤ)
16 eqid 2622 . . . . . . 7 (Unit‘(ℂflds ℤ[i])) = (Unit‘(ℂflds ℤ[i]))
1715, 16, 2subrguss 18795 . . . . . 6 (ℤ ∈ (SubRing‘(ℂflds ℤ[i])) → (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i])))
1811, 17ax-mp 5 . . . . 5 (Unit‘ℤring) ⊆ (Unit‘(ℂflds ℤ[i]))
1918sseli 3599 . . . 4 (𝐴 ∈ (Unit‘ℤring) → 𝐴 ∈ (Unit‘(ℂflds ℤ[i])))
208gzrngunit 19812 . . . . 5 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1))
2120simprbi 480 . . . 4 (𝐴 ∈ (Unit‘(ℂflds ℤ[i])) → (abs‘𝐴) = 1)
2219, 21syl 17 . . 3 (𝐴 ∈ (Unit‘ℤring) → (abs‘𝐴) = 1)
233, 22jca 554 . 2 (𝐴 ∈ (Unit‘ℤring) → (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
24 zcn 11382 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 481 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℂ)
26 simpr 477 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
27 ax-1ne0 10005 . . . . . . 7 1 ≠ 0
2827a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ≠ 0)
2926, 28eqnetrd 2861 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) ≠ 0)
30 fveq2 6191 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
31 abs0 14025 . . . . . . 7 (abs‘0) = 0
3230, 31syl6eq 2672 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = 0)
3332necon3i 2826 . . . . 5 ((abs‘𝐴) ≠ 0 → 𝐴 ≠ 0)
3429, 33syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ≠ 0)
35 eldifsn 4317 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
3625, 34, 35sylanbrc 698 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (ℂ ∖ {0}))
37 simpl 473 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℤ)
38 cnfldinv 19777 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
3925, 34, 38syl2anc 693 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = (1 / 𝐴))
40 zre 11381 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4140adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ ℝ)
42 absresq 14042 . . . . . . . 8 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
4341, 42syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴↑2))
4426oveq1d 6665 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (1↑2))
45 sq1 12958 . . . . . . . 8 (1↑2) = 1
4644, 45syl6eq 2672 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
4725sqvald 13005 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴↑2) = (𝐴 · 𝐴))
4843, 46, 473eqtr3rd 2665 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (𝐴 · 𝐴) = 1)
49 1cnd 10056 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℂ)
5049, 25, 25, 34divmuld 10823 . . . . . 6 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((1 / 𝐴) = 𝐴 ↔ (𝐴 · 𝐴) = 1))
5148, 50mpbird 247 . . . . 5 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = 𝐴)
5239, 51eqtrd 2656 . . . 4 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) = 𝐴)
5352, 37eqeltrd 2701 . . 3 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → ((invr‘ℂfld)‘𝐴) ∈ ℤ)
54 cnfldbas 19750 . . . . . 6 ℂ = (Base‘ℂfld)
55 cnfld0 19770 . . . . . 6 0 = (0g‘ℂfld)
56 cndrng 19775 . . . . . 6 fld ∈ DivRing
5754, 55, 56drngui 18753 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
58 eqid 2622 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
5912, 57, 2, 58subrgunit 18798 . . . 4 (ℤ ∈ (SubRing‘ℂfld) → (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ)))
604, 59ax-mp 5 . . 3 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ∈ ℤ ∧ ((invr‘ℂfld)‘𝐴) ∈ ℤ))
6136, 37, 53, 60syl3anbrc 1246 . 2 ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 𝐴 ∈ (Unit‘ℤring))
6223, 61impbii 199 1 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  {csn 4177  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  2c2 11070  cz 11377  cexp 12860  abscabs 13974  ℤ[i]cgz 15633  s cress 15858  Unitcui 18639  invrcinvr 18671  SubRingcsubrg 18776  fldccnfld 19746  ringzring 19818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-cnfld 19747  df-zring 19819
This theorem is referenced by:  zringndrg  19838  prmirredlem  19841  qqhval2lem  30025
  Copyright terms: Public domain W3C validator