Proof of Theorem prmirred
| Step | Hyp | Ref
| Expression |
| 1 | | prmirred.i |
. . 3
⊢ 𝐼 =
(Irred‘ℤring) |
| 2 | | zringbas 19824 |
. . 3
⊢ ℤ =
(Base‘ℤring) |
| 3 | 1, 2 | irredcl 18704 |
. 2
⊢ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℤ) |
| 4 | | elnn0 11294 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
| 5 | | ax-1 6 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 6 | | zringring 19821 |
. . . . . . . . . . 11
⊢
ℤring ∈ Ring |
| 7 | | zring0 19828 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘ℤring) |
| 8 | 1, 7 | irredn0 18703 |
. . . . . . . . . . 11
⊢
((ℤring ∈ Ring ∧ 𝐴 ∈ 𝐼) → 𝐴 ≠ 0) |
| 9 | 6, 8 | mpan 706 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐼 → 𝐴 ≠ 0) |
| 10 | 9 | necon2bi 2824 |
. . . . . . . . 9
⊢ (𝐴 = 0 → ¬ 𝐴 ∈ 𝐼) |
| 11 | 10 | pm2.21d 118 |
. . . . . . . 8
⊢ (𝐴 = 0 → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 12 | 5, 11 | jaoi 394 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 13 | 4, 12 | sylbi 207 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝐼 → 𝐴 ∈ ℕ)) |
| 14 | | prmnn 15388 |
. . . . . . 7
⊢ (𝐴 ∈ ℙ → 𝐴 ∈
ℕ) |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℙ
→ 𝐴 ∈
ℕ)) |
| 16 | 1 | prmirredlem 19841 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℕ
→ (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ))) |
| 18 | 13, 15, 17 | pm5.21ndd 369 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
| 19 | | nn0re 11301 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
| 20 | | nn0ge0 11318 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 21 | 19, 20 | absidd 14161 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (abs‘𝐴) =
𝐴) |
| 22 | 21 | eleq1d 2686 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ ((abs‘𝐴)
∈ ℙ ↔ 𝐴
∈ ℙ)) |
| 23 | 18, 22 | bitr4d 271 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈
ℙ)) |
| 24 | 23 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0)
→ (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈
ℙ)) |
| 25 | 1 | prmirredlem 19841 |
. . . . . 6
⊢ (-𝐴 ∈ ℕ → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 26 | 25 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴 ∈ 𝐼 ↔ -𝐴 ∈ ℙ)) |
| 27 | | eqid 2622 |
. . . . . . . . 9
⊢
(invg‘ℤring) =
(invg‘ℤring) |
| 28 | 1, 27, 2 | irrednegb 18711 |
. . . . . . . 8
⊢
((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ 𝐼 ↔
((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 29 | 6, 28 | mpan 706 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔
((invg‘ℤring)‘𝐴) ∈ 𝐼)) |
| 30 | | zsubrg 19799 |
. . . . . . . . . . 11
⊢ ℤ
∈ (SubRing‘ℂfld) |
| 31 | | subrgsubg 18786 |
. . . . . . . . . . 11
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubGrp‘ℂfld)) |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . . . 10
⊢ ℤ
∈ (SubGrp‘ℂfld) |
| 33 | | df-zring 19819 |
. . . . . . . . . . 11
⊢
ℤring = (ℂfld ↾s
ℤ) |
| 34 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(invg‘ℂfld) =
(invg‘ℂfld) |
| 35 | 33, 34, 27 | subginv 17601 |
. . . . . . . . . 10
⊢ ((ℤ
∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) →
((invg‘ℂfld)‘𝐴) =
((invg‘ℤring)‘𝐴)) |
| 36 | 32, 35 | mpan 706 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ →
((invg‘ℂfld)‘𝐴) =
((invg‘ℤring)‘𝐴)) |
| 37 | | zcn 11382 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 38 | | cnfldneg 19772 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
((invg‘ℂfld)‘𝐴) = -𝐴) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ →
((invg‘ℂfld)‘𝐴) = -𝐴) |
| 40 | 36, 39 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ →
((invg‘ℤring)‘𝐴) = -𝐴) |
| 41 | 40 | eleq1d 2686 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ →
(((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 42 | 29, 41 | bitrd 268 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 43 | 42 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ -𝐴 ∈ 𝐼)) |
| 44 | | zre 11381 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
| 45 | 44 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈
ℝ) |
| 46 | | nnnn0 11299 |
. . . . . . . . . 10
⊢ (-𝐴 ∈ ℕ → -𝐴 ∈
ℕ0) |
| 47 | 46 | nn0ge0d 11354 |
. . . . . . . . 9
⊢ (-𝐴 ∈ ℕ → 0 ≤
-𝐴) |
| 48 | 47 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤
-𝐴) |
| 49 | 45 | le0neg1d 10599 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| 50 | 48, 49 | mpbird 247 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0) |
| 51 | 45, 50 | absnidd 14152 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) →
(abs‘𝐴) = -𝐴) |
| 52 | 51 | eleq1d 2686 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) →
((abs‘𝐴) ∈
ℙ ↔ -𝐴 ∈
ℙ)) |
| 53 | 26, 43, 52 | 3bitr4d 300 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 54 | 53 | adantrl 752 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 55 | | elznn0nn 11391 |
. . . 4
⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨
(𝐴 ∈ ℝ ∧
-𝐴 ∈
ℕ))) |
| 56 | 55 | biimpi 206 |
. . 3
⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨
(𝐴 ∈ ℝ ∧
-𝐴 ∈
ℕ))) |
| 57 | 24, 54, 56 | mpjaodan 827 |
. 2
⊢ (𝐴 ∈ ℤ → (𝐴 ∈ 𝐼 ↔ (abs‘𝐴) ∈ ℙ)) |
| 58 | 3, 57 | biadan2 674 |
1
⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈
ℙ)) |