HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dfhnorm2 Structured version   Visualization version   GIF version

Theorem dfhnorm2 27979
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
dfhnorm2 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))

Proof of Theorem dfhnorm2
StepHypRef Expression
1 df-hnorm 27825 . 2 norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
2 ax-hfi 27936 . . . . . 6 ·ih :( ℋ × ℋ)⟶ℂ
32fdmi 6052 . . . . 5 dom ·ih = ( ℋ × ℋ)
43dmeqi 5325 . . . 4 dom dom ·ih = dom ( ℋ × ℋ)
5 dmxpid 5345 . . . 4 dom ( ℋ × ℋ) = ℋ
64, 5eqtr2i 2645 . . 3 ℋ = dom dom ·ih
7 eqid 2622 . . 3 (√‘(𝑥 ·ih 𝑥)) = (√‘(𝑥 ·ih 𝑥))
86, 7mpteq12i 4742 . 2 (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
91, 8eqtr4i 2647 1 norm = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cmpt 4729   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  csqrt 13973  chil 27776   ·ih csp 27779  normcno 27780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hfi 27936
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-dm 5124  df-fn 5891  df-f 5892  df-hnorm 27825
This theorem is referenced by:  normf  27980  normval  27981  hilnormi  28020
  Copyright terms: Public domain W3C validator