![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfid7 | Structured version Visualization version GIF version |
Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
Ref | Expression |
---|---|
dfid7 | ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid4 5026 | . 2 ⊢ I = (𝑥 ∈ V ↦ 𝑥) | |
2 | ancom 466 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ (⊤ ∧ 𝑥 ⊆ 𝑦)) | |
3 | truan 1501 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ⊆ 𝑦) ↔ 𝑥 ⊆ 𝑦) | |
4 | 2, 3 | bitri 264 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑦 ∧ ⊤) ↔ 𝑥 ⊆ 𝑦) |
5 | 4 | abbii 2739 | . . . . 5 ⊢ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = {𝑦 ∣ 𝑥 ⊆ 𝑦} |
6 | 5 | inteqi 4479 | . . . 4 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} |
7 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | 7 | intmin2 4504 | . . . 4 ⊢ ∩ {𝑦 ∣ 𝑥 ⊆ 𝑦} = 𝑥 |
9 | 6, 8 | eqtri 2644 | . . 3 ⊢ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)} = 𝑥 |
10 | 9 | mpteq2i 4741 | . 2 ⊢ (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) = (𝑥 ∈ V ↦ 𝑥) |
11 | 1, 10 | eqtr4i 2647 | 1 ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ⊤wtru 1484 {cab 2608 Vcvv 3200 ⊆ wss 3574 ∩ cint 4475 ↦ cmpt 4729 I cid 5023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-int 4476 df-opab 4713 df-mpt 4730 df-id 5024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |