| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfint2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfint2 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-int 4476 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | |
| 2 | df-ral 2917 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) | |
| 3 | 2 | abbii 2739 | . 2 ⊢ {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| 4 | 1, 3 | eqtr4i 2647 | 1 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∩ cint 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-int 4476 |
| This theorem is referenced by: inteq 4478 elintg 4483 nfint 4486 intss 4498 intiin 4574 dfint3 32059 |
| Copyright terms: Public domain | W3C validator |